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HIGH-SPEED CONVOLUTION AND CORRELATION*

Thomas (3. Stockham, Jr.
Massachusetts Institute of Technology, Project MAC
Cambridge, Massachusetts

INTRODUCTION

Cooley and Tukey' have disclosed a procedure
for synthesizing and analyzing Fourier series for dis-
crete periodic complex functions.+ For functions of
period N, where N is a power of 2, computation
times are proportional to N log. N as expressed in
Eq. (0).

T.. = k., Nlog. N (0)

where k. is the constant of proportionality. For
one realization for the IBM 7094, k., has been
measured at 60 usec. Normally the times required
are proportional to N’ For N = 1000 speed-up
factors in the order of 50 have been realized! Eq.
(1b) synthesizes the Fourier series in question. The

complex Fourier coefficients are given by the analy-

s1s equation, Eq. (1a).

N—1

Fm=§ﬂwﬁ (12)
j=
1 N-1

() = — D Flkyw* (1b)
N ko0

where w = e2*/¥ the principal Nth root of unity.
The functions f and F are said to form a discrete

*Work reported herein was supported (in part) by Project
MAC, an M.I.T. research program sponsored by the Advanced
Research Projects Agency, Department of Defense, under Office
of Naval Research Contract Number Nonr-4102(01).

TTo be able to use this procedure the period must be a highly
composite number.

formed circularly.

378

periodic complex transform pair. Both functions

are of period N since
F(k)y = F(k + ¢N) (2a)

and

S = f(j + cN) (2b)

TRANSFORM PRODUCTS

Consider two functions g and 4 and their trans-
forms G and H. Let G and H be multiplied to form
the function C according to Eq. (3),

C(k) = G(k) x HK) (3)
and consider the inverse transform c(j). c(j) is
given by Eq. (4)

A
c() = = 2 8K - J)
J=0
1 N1
=~ 2 h(Neg(j = J) (4)
J=0 |

as a sum of lagged products where the lags are per-

Those values that are shifted
from one end of the summation interval are circu-
lated into the other.

The time required 10 compute ¢(j) from either
'orm of Eq. (4) is proportional to N2, If one com-
putes the transforms of g and &, performs the multi-
plication of Eq. (3), and then computes the inverse
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transform of C, one requires a time given by Eq. (5)

Tcir{: = 3kﬂN10g2N -+ kmN

= kere N(loga N + ) ()

where Kg.c = 3k, u = kn/kere, and k,, N is the time
required to compute Eq. (3). Of course this assumes
N 1s a power of 2. Similar savings would be possible

provided N 1s a highly composite number.

APERIODIC CONVOLUTION

The circular lagged product discussed above can
be alternately regarded as a convolution of periodic
functions of equal period. Through suitable modifi-
cation a periodic convolution can be used to com-
pute an aperiodic convolution when each aperiodic
function has zero value everywhere outside some

single finite aperture.

Let the functions be called d(j) and s(j). Let the
larger finite aperture contain M discrete points and
let the smaller contain N discrete points. The result
of convolving these functions can be obtained from

the result of circularly convolving suitable aug-
mented functions. Let these augmented functions
be periodic of period L, where L is the smallest
power of 2 greater than or equal to M + N. Let

them be called da(j) and sa(j) respectively, and
be formed as indicated by Eq. (6).

fa(j) = f{j + Jjo) 0<j<M-1|
=0 M<j<L-1 (6
= fa(j + nlL) otherwise

where j, symbolizes the first point in the aperture of
the function in question. The intervals of zero
values permit the two functions to be totally non-
overlapped for at least one lagged product even
though the lag is a circular one. Thus, while the re-
sult 1s 1tself a periodic function, each period is an
exact replica of the desired aperiodic result.

The time required to compute this result is given
in Eq. (7).

Tapcr = kcin: L(l(}gz L + ﬂ) (7)

where M + N < L < 2(M + N). For this case,
while L must be adjusted to a power of 2 so that the
high-speed Fourier transform can be applied, no re-

strictions are placed upon the values of either M
or N.

SECTIONING

Let us assume that M is the aperture of d(;j) and
N 1s that of s(j). In situations where M is con-
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siderably larger than N, the procedure may be
further streamlined by sectioning d(j) into pieces
each of which contains P discrete points where

P+ N = L, apower of 2. We require K sections
where

K = least integer > M /P (8)

Let the ith section of d(j) be called 4,(j). Each sec-
tion 1s convolved aperiodically with s(j) according
to the discussion of the previous section, through
the periodic convolution of the augmented sections,
da;(j) and sa(j). -

Each result section, r,(j), has length L = P + N
and must be additively overlapped with its neigh-

bors to form the composite result r(j) which will
be of length

KP+N>M LN (9a)

It r;(j) 1s regarded as an aperiodic function with
zero value for arguments outside the range 0 < ;

< L — 1, these overlapped additions may be ex-
pressed as

K—1

r(jY=D r{j-iP) j=01,.. KP+N — I
i=0

(9b)

Each overlap margin has width N and there are
K — 1 of them.

The time required for this aperiodic sectioned
convolution is given in Eq. (10).

Tscr.:t = krf(P T N)logZ(P + N)
+ 2Kko(P + N)logy(P + N)
+ Kk, (P + N)

k(2K + 1) (P + N)log,(P + N)
+ Kk.w(P + N) |

~ ko(2K + 1) (P + N)[loga(P + N) + ']
(10)
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where u’' = k.., /2k,. Kk, (P + N) i1s the time re-
quired to complete auxiliary processes. These
processes involve the multiplications of Eq. (3), the
formation of the augmented sections da,( j), and the
formation of r( ) from the result sections ri( j). For
the author’s realization in which core memory was
used for the secondary storage of input and output
data, u' was measured to be 1.5, which g1ves
kKax = 3k, = 300 usec. If slower forms of auxtliary
storage were employed, this figure would be en-
larged slightly.

For a specific pair of values M and N, P should
be chosen to minimize T,,.,. Since P + N must be a
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power of 2, it is a simple matter to evaluate Eq. (10)
for a few values of P that are compatibie with this
constraint and select the optimum choice. The size
of available memory will place an additional con-
straint on how large P + N may be allowed to be-
come. Memory allocation considerations degrade
the benefits of these methods when N becomes too
large. In extreme cases one is forced to split the
kernel, s(j), into packets, each of which is con-
sidered separately. The results corresponding to all
packets are then added together after each has been
shifted by a suitable number of packet widths. For
the author’s realization N must be limited to occupy
about 14 of the memory not used for the program or
for the secondary storage of input /output data. For
larger N, packets would be required.

COMBINATION OF SECTIONS IN PAIRS

[f both functions to be convolved are real instead
of complex, further time savings over Eq. (10) can
be made by combining adjacent even and odd sub-
scripted sections da,( j) into complex composites.
et even subscripted da;( j) be used as real parts and
odd subscripted da;, ,(j) be used as imaginary parts.
Such a complex composite can then be transformed
through the application of Egs. (1a), (3), and (1b)
to produce a complex composite result section. The
desired even and odd subscripted result sections
ri(j) and r;, () are respectively the real and imag-
inary parts of that complex result section.

This device reduces the time required to perform
the convolution by approximately a factor of 2.
More precisely it modifies K by changing Eq. (8) to

(11)

For very large numbers of sections, K, Eq. (10)
can be simplified to a form involving M explicitly

K = least integer > M'/ZP
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instead of implicitly through K. That form is given
in Eq. (12)

Tfasl = kclM((P + N)/P) [lng(P + N) Bl P'F] (12)

Since it makes no sense to chcose P < N, for simple
estimates of an approximate computation time we
can write

Tfas[ == 2k5;M[10g2N -+ ,u.' -+ l] (13) |

EMPIRICAL TIMES

The process for combined-sectioned-aperiodic
convolution of real functions described above was
implemented in the MAD language on the IBM
7094 Computer. Comparisons were made with a
MAD language realization of a standard sum of
lagged products for N = 16, 24, 32, 48, 64, 96, 128,
192, and 256. In each case M was selected to cause
Eq. (11) to be fulfilled with the equal sign. This step
favors the fast method by avoiding edge effects.
However, P was not selected according to the op-
timization method described above (under “*Section-
ing Convolution™), but rather by selecting L as
large as possible under the constraint,

InL > P/N (14)

This choice can favor the standard method.

Table 1 compares for various N the actual com-
putation times required in seconds as well as times
in milliseconds per untt lag. Values of M, K, and L
are also given, |

Relative speed factors are shown i1n Table 2.

ACCURACY

The accuracy of the computational procedure
described above is expected to be as good or better

Table 1. Comparative Convolution Times for Various N
N 16 24 32 48 64 96 128 192 256
M 192 208 384 416 768 832 1536 1664 3584
K 2 | 2 1 2 1 2 1 i
L 64 128 128 256 256 512 512 1024 2048

Time in seconds
Tstandard 0.2 0.31 0.8 1.25 3.0 50 12 20 48
T ot 03 04 06 08 13 18 30 38 8.0
Time in milliseconds per unit lag
Toandarayy 1.0 1.4 20 30 39 60 78 120 133
T tast/m 1.5 1.9 15 19 16 21 19 22 22

380
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Table 2.

Speed Factors for Various NV

N 16 24 32 48 64 96

Speed factor 5§ § 4 1.5 2.3 2.8 4.0

*EFstimated values.

than that obtainable by summing products. Specific
investigations of the accuracy of the program used
to accumulate the data of Tables | and 2 are In
process at the time of this writing. The above ex-
pectations are fostered by accuracy measurements
made for floating-point data on the Cooley-Tukey
procedure and a standard Fourier procedure. Since
the standard Fourier procedure computes summed
products, its accuracy characteristics are similar to
those of a standard convolution which also com-
putes summed products. Cases involving functions
of period 64 and 256 were measured and it was dis-
covered that two Cooley-Tukey transforms in cas-
cade produced respectively as much, and half as
much, error as a single standard Fourier transtorm.
This data implies that the procedures disclosed here
may vield more accurate results than standard
methods with increasing relative accuracy for
larger V.

128 192 256 512 1024 2048 4096

52 6 13* 24* 44* BO*

which, in turn, after weighting by so-called spectral
windows are Fourier transformed into power spec-
trum estimates. Speed advantages can be gained
when Eq. (15) is evaluated in a manner similar to
that outlined above (under ‘“Aperiodic Convolu-
tion’’) except that in this case L is only required to
exceed N + Q where Q is the number of lags to be
considered. This relaxed requirement on L 1s pos-
sible because it is not necessary to avoid the effect
of performing the lags circularly for all L lags but
rather for only Q of them. An additional constraint
is that © be larger than a multiple of log, L. The
usual practice is to evaluate Eq. (15) for a number of
lags equal to a substantial fraction of N. Since the
typical situation involves values of N in the hun-
dreds and thousands, the associated savings may be
appreciable for this application.

Digital spatial filtering is becoming an increas-
ingly important subject.>* The principles discussed
here are easily extended to the computation of
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Today the major applica
and spectral analysis.

Digital signal processing, or digital
is sometimes called, 1s often accompl
the use of suitable difference equatic
For difference equations characterized
parameters, computations may be
times short compared to those require
ard lagged product or the method d
However, 1n some cases, the desire
acteristics are too complex to permit
a sufficiently simple difference equatic
notable cases are those requiring h
selectivity coupled with short-dure
response and those in which the impu
found through physical measuremer
situations it i1s desirable to employ t
described here either alone or casce
ference equation filters.

The standard methods for perfor
analysis? involves the computation o
ucts of the form
N—j—1

F(jy = 2. x(Dy( +j

J=0
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