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ABSTRACT 

The acoustic impedance of a material describes its reflective and absorptive 

properties. Acoustic impedance may be measured in a wide variety of ways. This thesis 

describes the construction and testing of an acoustic impedance measurement tube which 

employs modern Fourier Transform techniques. Two methods are employed for acoustic 

impedance measurement using this apparatus. One technique uses a two-microphone 

continuous excitation method and the other uses a single microphone transient excitation 

method. Simple acoustic theory is used in the derivation of equations for both methods. 

MATLAB computer programs are developed using these equations, to provide graphical 

results of acoustic impedance measurements over a frequency range for a given material, 

from raw data. A procedure is subsequently developed for using this apparatus to make 

acoustic impedance measurements. The performance of this device is evaluated by 

making measurements utilizing both methods on three sample materials and also with the 

end of the tube open to the atmosphere (referred to as an open tube measurement). The 

open tube measurements are compared with theoretical values. The results using both 

approaches compared favorably with the open tube theoretical values. Additionally bolh 

approaches agreed reasonably well with each other for the three sample materials. 

Performance at frequencies below 500 Hz, however, yielded deficient results, indicating a 

need for development of a filter for better accuracy. 
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I.  INTRODUCTION 

A.        PURPOSE 

The purpose of this thesis is to describe the construction and testing of a modem 

"impedance tube" apparatus to measure the acoustic impedance of any material placed in 

the cup holder at the end of the tube. This device will measure the complex acoustic 

impedances of a variety of materials over a frequency range (typically from 0 to 4 kHz). 

This acoustic impedance tube will replace the older acoustic impedance tube apparatus 

used in the Naval Postgraduate School Physics Department Acoustics Teaching 

Laboratory. A new laboratory experiment was developed using this new acoustic 

impedance tube. The older acoustic impedance tube and new acoustic impedance tube 

are shown below in Figures 1 and 2 respectively. 

Figure 1. Older model acoustic impedance tube manufactured by Bruel and Kjaer. 
This will be replaced by the newer tube shown in Figure 2. 



Figure 2. The new acoustic impedance measurement tube is shown with the 
Stanford Research Systems SR-785 dynamic signal analyzer, the Philips PM-3384 
oscilloscope, and the Techron 5507 power amplifier (below the impedance tube). 

Although the older acoustic impedance tube yields accurate results, the parts for 

this device are no longer in production, making repairs difficult and future longevity 

uncertain. The newer acoustic impedance tube has the primary advantages of making 

measurements much more rapidly and automatically, and uses modem computer software 

to show results graphically in very little time. It is also very inexpensive, being mostly 

made of plastic plumbing pipes. Measurements will be made using both devices, and the 

results will be compared, in Chapter IV. 

The new acoustic impedance tube is used with a dynamic signal analyzer to 

measure the acoustic impedance of materials using the techniques described in detail in 

the next chapter. The most significant differences between the old and new measurement 

techniques are that the old technique requires a series of single-frequency measurements 

using a movable probe tube microphone, whereas the new techniques use stationary 

microphones, and employ broadband signals which are processed using FFT analysis. 

The new techniques do not offer any inherent improvement in accuracy over the old 

probe tube technique; they are just simpler and faster to perform. 



The dynamic signal analyzer does not directly make the acoustic impedance 

measurement, but records Fourier transformed acoustic pressure data, which are saved on 

a floppy disk. These are subsequently loaded into a MATLAB computer program that 

does the actual calculations and presents the results in graphical format in only a few 

seconds. The results will be presented in Chapter IV. 

B.        DEFINITION OF ACOUSTIC IMPEDANCE 

Throughout this thesis, by the term acoustic impedance will be meant specific 

acoustic impedance. The specific acoustic impedance, z , at a point in a sound field is 

the quotient of the complex acoustic pressure, Sp, and the complex acoustic velocity, 

Su , at that point (Reference 1): 

z=— (Equation 1) 
Su 

For a plane progressive sound wave in a fluid, the specific acoustic impedance 

equals poc, where po is the fluid mass density and c is the speed of sound. The quantity 

poc is called the characteristic impedance of the fluid. For air, poc «415 Pa-s/m; for 

water, poc = 1.5x 106 Pa-s/m at normal temperature and pressure. 

1. What Acoustic Impedance Is Used For 

The specific acoustic impedance at a boundary between a fluid and a material is a 

property of the material. For sound waves in a fluid, normally-incident upon a planar 

boundary, the pressure reflection coefficient, R, is given by: 

~ Z.  ,    — Or,C 
R =   bay    HO (Equation 2) 

Zbdy + PoC 



where   zbd    is the boundary (normal) specific acoustic impedance and p0c is the 

characteristic impedance of the fluid. 

C.        HOW ACOUSTIC IMPEDANCE IS MEASURED 

Acoustic impedance may be measured by a variety of methods. These methods 

shall be discussed in detail in Chapter II and are briefly introduced here. 

1. Classical Standing Wave Ratio (SWR) Method 

This technique, as mentioned earlier, is the oldest method used for determining 

the acoustic impedance of a material. By generating acoustic planar pressure waves in a 

tube at various frequencies, the maxima and minima of the resulting standing waves are 

measured with one mobile probe tube microphone. The ratio of these values (the 

standing wave ratio or SWR) and their locations are subsequently used to calculate the 

acoustic impedance. (Reference 1) 

2. Modern Acoustic Impedance Measurement Methods 

Due to advances in technology (particularly in computers), many subsequent 

methods have been developed for acoustic impedance measurement. Some of these 

methods are: the two-microphone method (TMM), the single microphone method 

(SMM), and the multi-poiit method (MPM). Certainly other techniques exist, b".t only 

these methods will be briefly explored in Chapter II. 

What makes these methods different from the SWR method is their use of 

stationary microphones, and their use of simultaneous, multiple frequencies. Although 

planar waves must be generated in a tube, as in the SWR method, these techniques 

employ more complex data processing to extract impedance. They do not use the 

standing wave ratio to determine the acoustic impedance.   Since they do not employ a 



moving microphone, these methods are considerably faster than the SWR method.  The 

accuracies vary considerably, however, so there are clearly trade offs that will be 

involved. 

D.        SCOPE OF THESIS 

Having provided a brief introduction to acoustic impedance measurement, the 

thesis outline is briefly presented. Chapter II will focus on the theory used by the 

acoustic impedance measurement apparatus. It will provide a background of several 

methods used to determine the acoustic impedance of a material, including their 

advantages and disadvantages. Next it will specifically explore the theory for acoustic 

impedance determination using two fixed microphones. Three equations will be derived 

for subsequent analysis: a basic equation, an exact equation, and a low frequency 

approximation equation. Additionally, a transient analysis technique, employing only 

one microphone, is presented. This analysis leads to the development of a formula for 

the (pressure) reflection coefficient of the material. From this, acoustic impedance can 

also be determined. MATLAB computer programs are developed for each of these 

approaches. 

Chapter in will focus on the development of the apparatus and the procedures 

used. This will include a discussion of the microphone, power supply assembly, and 

compression horn drivers used. It will also explain in detail the procedures developed 

from the theories for this apparatus. One procedure makes a continuous-wave 

measurement with two microphones while the other makes a transient measurement with 

one microphone. 



Chapter IV applies the procedures developed in the previous chapter to make 

acoustic impedance measurements for three sample materials using two compression 

horn drivers. It also describes the results of measurements made using an "open" tube 

(where the end cap is removed and the tube is open to the atmosphere). The "open" tube 

establishes a standard for which the effectiveness of the apparatus may be evaluated, 

since an approximate theory exists for the results in this case. The following approaches 

are compared: the two-microphone measurement (continuous) using both the exact and 

low frequency approximate equations and the one-microphone measurement (transient). 

The performances of two different drivers are compared as well. 

Chapter V provides a brief summary of the conclusions developed during the 

experiments conducted using this acoustic impedance tube apparatus. 



II.      ACOUSTIC IMPEDANCE MEASUREMENT THEORY 

A.   BACKGROUND 

1.        Classical Standing Wave Ratio (SWR) Method 

A great deal of research has been done in the past on acoustic impedance 

measurement tubes. The standing wave method (which the old impedance tube in Figure 

1 incorporates) was the primary technique for measuring acoustic impedance over the last 

80 years. This process requires location and amplitude measurement of the amplitude 

maxima and minima of the planar acoustic pressure waves in the tube using a mobile 

probe tube microphone, and, from these, computing the standing wave ratio (SWR). 

Figure 3 illustrates the basic set up for this process. Planar waves are generated by the 

speaker at the left end of the tube. (Reference 1) 

The phase interference between the transmitted (incident) and reflected waves in a 

terminated pipe results in a standing wave pattern. The properties of the standing wave 

may be used to determine the boundary acoustic impedance. (Reference 1) We denote 

the complex amplitudes of these waves at the reflection boundary by the following: 

Incident: A - A Reflected: B = Be*9 where 0 = phase angle   (Equation 3) 

Adapting from Kinsler et. al (Reference 1), the boundary specific acoustic 

impedance may be determined from the following equation: 

\*wy 
(Equation 4) 

where po and c are the density of air and speed of sound in air, respectively. 



Again from Kinsler et. al (Reference 1), the amplitude at a pressure maximum is 

A+B, and the amplitude at a pressure minimum is A-B. The ratio of a pressure at a 

maximum to that at a minimum is: 

SWR = 
A + B 

A-B 
(Equation 5) 

which may be rewritten as: 

B    SWR-I 

A    SWR + l 
(Equation 6) 

From Figure 3, the SWR measurement may be obtained by probing the pressure 

field in the tube with a microphone and noting the amplitude at the first maximum and at 

the first minimum from the end where the sample material is located. (Reference 1) 

Equation 5 yields the B over A ratio. The phase angle, 8, may be determined by the 

distance of the first minimum from the sample end, x, shown in the following equation: 

6 = 2kx-7t (Equation 7) 

Probe Tube 

I 
Carriage Assembly 

(Contains Microphone) 

Spi. 3ker 
Sample 

Figure 3. Schematic for the acoustic impedance tube utilizing the SWR method. 



Therefore, by simply measuring the SWR and distance, x, Equations 4, 6, and 7 

are used to calculate the acoustic impedance of any material placed at the end of the tube. 

a. Advantages and Disadvantages of Classical SWR Method 

This process exhibits good accuracy over the 0.1 to lOpc impedance 

range, and modern techniques have automated the process using SWR and null searching 

computer codes. It has the added benefit of being able to directly measure the standing 

wave parameters. (Reference 3) Despite these advantages, it is inherently time 

consuming (even with automation) and limited to frequencies below the cut on frequency 

of higher order propagating modes in the tube (as are the other methods). It additionally 

has accuracy limitations by SWR and null location resolution. (Reference 3) This is 

further discussed later in this chapter in part B. 

2. Modern Acoustic Impedance Measurement Methods 

With the development over the last 20 years of fast Fourier transform algorithms 

that can be performed on modern computers and dynamic signal analyzers, new 

impedance measurement techniques have emerged, employing stationary microphones, 

making point type measurements in a standing wave field. Some of these methods 

include the two-microphone method (TMM), the multipoint method (MPM), and even a 

single microphone method (SMM). (Reference 3) 

a. Comparison of the Advantages and Disadvantages of Modern 
Acoustic Impedance Measurement Methods 

The acoustic impedance tube analyzed in this discussion and shown in 

Figure 2 uses the TMM. The theory of operation and apparatus will be covered 

rigorously in part C later in this chapter. The primary advantages of the TMM are the 

significant time saving mentioned earlier, no required moving parts, and its excellent 



suitability for quick screening tests with a random noise source. The disadvantages to 

this method are that its accuracy significantly degrades at large wavelengths (low 

frequencies) and at microphone separations near one-half wavelength (high frequencies). 

The TMM has the added problems of requiring highly accurate (relative) microphone 

calibrations and uses a 1-D wave propagation model. (Reference 3) The MPM, on the 

other hand, is very accurate (when using a least squares data fitting), has an enhanced 

frequency range, and has no restriction on microphone separation relative to wavelength. 

The drawbacks of the MPM are its complexity, required moving parts, and longer amount 

of time needed to make a measurement compared to the TMM. (Reference 3) It 

additionally needs all microphones to be calibrated with a high degree of accuracy. 

The research of Patricia Stiede and Michael Jones, contained in Reference 

3, explores the techniques described above (SWR method excepted) using different signal 

sources and compares their results. They found the MPM with a single discrete 

frequency to be the most accurate but also the most time consuming method in use. From 

their results, Stiede and Jones further note that the relative merits of each of the other 

methods were shown to depend upon a trade-off between the amount of time available 

and the accuracy necessary. (Reference 3) Interestingly, they note the TMM exhibited 

minimal loss of accuracy using a pseudo-random noise source (at frequencies under 2.5 

kHz). The TMM analyzed in this thesis uses a band-limited, pseudo-random noise 

source, and thus will be expected to yield similar accuracy. 

It is also important to note that all of these modern methods are also 

limited to frequencies below which non-planar wave propagation begins. This is 

discussed further in the following section. 

10 



B.        FREQUENCY LIMITS OF THE IMPEDANCE TUBES 

One of the first important steps in using an impedance measurement tube is 

knowledge of the range of frequencies for which it will yield accurate results. The old 

impedance tube (mentioned in Chapter I) uses the standing wave ratio method of 

computation for acoustic impedance. This technique was discussed previously in part A. 

The lower frequency limit of this impedance tube is determined by the requirement that 

there be two pressure nodes available for measurement. The upper limit is set by the cut- 

off frequency of the first non-planar standing wave. 

In the case of the new acoustic impedance measurement tube, the upper frequency 

limit is also determined by the cut-off frequency of the first non-planar wave. This 

frequency can readily be determined from the relationship: 

ka = 1.84 (Equation 8) 

In this case "£" is the wave number and "a" is the radius of the impedance tube. Using 

the fact that the diameter of the new impedance tube is approximately 2 inches (5.08 cm) 

and applying appropriate conversion factors, the cut-off frequency of the first non-planar 

wave is approximately 4 kHz. By comparison, the old acoustic impedance tube has a 

diameter of 10 centimeters, and so the first non-planar wave is excited at approximately 2 

kHz. This cut-off will limit the frequency range over which the old and new acoustic 

impedance tube measured impedances may be compared, as will be seen when the results 

are discussed in Chapter IV. 
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C.        IMPEDANCE MEASUREMENT THEORY USING        TWO 
MICROPHONES (CONTINUOUS EXCITATION) 

The basic components of the apparatus used to measure acoustic impedance by 

the two-microphone method are schematized in Figure 4. A driver/loudspeaker at one 

end excites plane waves in the tube, which reflect off the sample, located at the other end. 

Two microphones are placed near the sample end of the tube. The specific acoustic 

impedance at the reflecting surface is given by: 

2.,,. =-§ L (Equation 9) 
ou 'bdy c~     \bdy 

where 5p and Su   are the acoustic pressure and velocity, respectively, at the reflecting 

surface. 

The following subsections describe three approximation methods that were 

investigated to estimate the right hand side of Equation 9 from microphone measurements 

made at two fixed locations near a reflection boundary. 

1.        Simplest approximation 

Simple estimates for the complex pressure, Spbdy, and complex velocity, Subdy, to 

be used in Equation 9 are: 

5pbdy *#(*.) (Equation 10) 

_, 1 (Sp(x,) - Sp(x.)) 
ffib* * x      V—^T-^ (Equation 11) 

jcopQ (x2-xl) 

where 5p{xx) and Sp(x2) are the measured acoustic pressures at distances Xi and x2 from 

the end of the acoustic impedance measurement tube, respectively, as shown below in 

Figure 4.  Additionally po is the density of air and co is the radial frequency (defined as 
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the product of 2TT and the temporal frequency, measured in Hz). In this approximation, 

we estimate the pressure at the reflection boundary as the pressure at the closest 

microphone, and we estimate the velocity at the boundary as the velocity estimated at the 

location midway between the microphones, using simple linear interpolation of the 

pressure field. 

Speaker Tube Wall 
Sample 

Cup 

Microphone 2 positioned 
at X=-X, 

Microphone 1 
positioned at X=-X] 

X=0 

Figure 4. These are the microphone positions in the impedance tube during an 
impedance measurement. 

Combining Equations 9, 10, and 11, the acoustic impedance of the sample surface 

is estimated as: 

Zbdy  - 

_ 76>P0X(A;-X,) 

(f-1) 
(Equation 12) 

where using simplified notation:  5px = 5p(xx) and Sp2= Sp(x2). 

As one can see, complex pressure measurements are required at the two points, X\ 

and X2. The measured microphone voltages are proportional to the acoustic pressures in 

the acoustic impedance measurement tube: 
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<Sv, = C, (co) x ^p, (Equation 13) 

5v2 =C2(co)x Sp2 (Equation 14) 

where <Sv, and<5v2 are the measured complex voltages, and C, and C2 are complex 

microphone voltage sensitivities that are a function of frequency. It follows that the ratio 

of complex pressures is: 

%L = £LX& (Equation 15) 
<?,     C2    <5v, 

From Equation 15, if the ratio of the complex microphone sensitivities is known, 

the ratio of the complex pressures can readily be determined from the measured ratio of 

complex microphone voltages. In practice, the ratio of sensitivities is obtained from a 

measurement of the ratio of microphone output voltages with both microphones exposed 

to the same acoustic pressure: 

C2 _ <5v. 
bpx=dp2 

= FR\ (Equation 16) 

This is just the frequency response (designated as complex termFi?l) of the 

signals from microphones. For this measurement, the microphones are flush-mounted in 

a rigid termination at the sample end of the tube. Notice that if two frequency response 

measurements are made, the first as described above, with both microphones flush at the 

end of the tube, and the second with a sample in place and with the microphones in their 

usual positions, the acoustic impedance as a function of frequency may readily be 

determined. 
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Let:  FR2 = ^-\sample (Equation 17) 

be the ratio of microphone output voltages with a sample in place. 

The complex acoustic impedance is then determined by the equation: 

2" « JvPo^Xi-*) (Equation 18 - the Basic Equation) 

FRl 

In the new impedance tube apparatus, the spacing X2 - xi is 0.0144m. 

a. Using the Basic Approach in a Computer Program 

A procedure was  developed to  obtain  the two  frequency response 

functions, FR\ and FR2, using a dynamic signal analyzer. These are stored to floppy 

disk, and transferred to a MATLAB program, which employs Equation 18 to calculate 

and plot acoustic impedance. These are described more fully in the following chapter 

and in the appendices. 

2. The Exact Approach 

Although the method described above in H.C.I provides a simple, albeit rather 

crude approximation for estimating the acoustic impedance measurement, there is a more 

exact approach to calculating the complex value of the acoustic impedance. By referring 

to Figure 4 again, begin by representing the complex pressure at any given point in the 

tube as: 

Sp(x, t) = AeJa" [e'jL + Rcßx ] (Equation 19) 

k =k + ja (Equation 20) 
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(Equation 21) 

*bdv 

Poc 
(Equation 21 a) 

Here, A is the complex wave amplitude, and k is the complex wave number. 

Also: k=2n/X is the real wave number; a is the attenuation coefficient; R is the pressure 

reflection coefficient; zMx is the boundary specific acoustic impedance; and poc is the 

characteristic impedance of air. It can easily be shown from Equation 21 that: 

\ + R 

l-R 
(Equation 22) 

The complex velocity at any given point in the tube is: 

Su(x, t) = -^- x d-^l = -*- e>" [e-fkx - Re* ] 
japo dx p0c 

(Equation 23) 

Using Equation 19, define the complex pressures at Xiand x2: 

jo>lr-jkx,        n-jkx, -,        o        jot Sp(-xt,t) = Aeja"[e-JKX' + ReJKX' \ = Sp,e (Equation 24) 

- ~A„iMX»-ikxi j_ T?V**2 1 = Ar> 0'
m 6p(-x2,t) = Ae"°'[e-JKX' + ReJKX' ] = 5p2e (Equation 25) 

Dividing Equation 25 by Equation 24 yields: 

^ = e^+Re-^ = ejUxi_x0 [1 + Re-2*] 

#,      e*'+Re"/x| [1 + RV
2
*

1
] 

(Equation 26) 

Using algebra, Equation 26 can be rewritten in terms of the complex reflection 

coefficient as follows: 
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f srr   \ 
jkx2 [eJKX> 

R = 

-[e jkx2 

5p Jkx\ 

Jkx\ 

(Equation 27) 

From Equation 21, we can write: 

häzl 
[eJ***  - ej^ j 

y'fc.Vi e'** ] 

(Equation 28) 

Solving for the complex relative acoustic impedance yields: 

jkx2 ry«, <fe2 ']-[^ e^' ] 

-re/ 

[e 
-jkx2 

f ST- ^ 
<fe2 

^i~ \ 

] + [c 
yÄx3 

<5p 

v^iy 

g7«, ] 

(Equation 29) 

This simplifies to: 

•j'[sinA:;t, 
f s~ \ 

sin kxx ] 

[cos kx2 

f s~ \ 
0P2 cos&x,] 

(Equation 30 - the Exact Equation) 

This equation is exact. 

a. Using the Exact Approach in a Computer Program 

Using the microphone positions, X2 and xi, and obtaining the pressure ratio 

as previously described (Equation 15 and following), this equation gives the most 

accurate estimation of boundary acoustic impedance. As before, the required frequency 

response measurements were made using a dynamic signal analyzer and stored to a disk 
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for later analysis using MATLAB, which employs Equation 30 to calculate and plot 

acoustic impedance. Further details appear in the next chapter and in the appendices. 

3. The Low Frequency Approximation 

If the complex value of "Ax" is assumed to be small, Equation 30 simplifies to: 

- j[kx2 - Ax,] 

-re/ 

[I" 

(Equation 31 - Low Freq. Equation) 

It can be shown that this approximation is equivalent to estimating the pressure at 

the boundary by linear extrapolation of the pressures at the microphones, while still 

estimating the velocity at the boundary as that estimated between the microphones using 

linear interpolation of the pressure field the same as the most simple approximation 

presented previously. 

The derivation is as follows. We estimate the boundary acoustic pressure and 

velocity in the following equations: 

<?W =<?*i+*i 
3p, - 5p2 dp] 

(x2 ■ - x,)      (x2 - x,) 
[x2 

f sr-  \ 
OP 2 

V^. J 
xj (Equation 32) 

™\bdy   = 
■1 (Sp2 -5px)    -j 

op}[ -1] 

jcop (-x2 - x,)      cop     (x2 - X, ) 
(Equation 33) 

Using Equations 32 and 33, the acoustic impedance of the boundary can be 

determined: 
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<Spi 

[x2 

rfa^ XJ 
'bdy 

6)p0(x2-X,) fa{ 

(*,-*,)    j    fa 
(Equation 34) 

This leads to a final result for relative acoustic impedance that matches Equation 

31: 

-j[kx2 

'rel 
-bdv 

Poc 

ffa^ 
kxx~\ 

[1- 
ffaS 

(Equation 35 - Low Freq. Equation) 

a. Using   the  Low   Frequency  Approximation   in   a   Computer 
Program 

As mentioned previously,  a procedure was developed to obtain the 

pressure ratio using a dynamic signal analyzer. This data are stored to a floppy disk and 

transferred to a MATLAB program that employs Equation 31 (or Equation 35) to 

calculate and plot an approximation of acoustic impedance.    Low frequencies are 

inherently assumed. Further details appear in the next chapter and in the appendices. 

D.        IMPEDANCE MEASUREMENT THEORY USING ONE MICROPHONE 

1. Measurement of Reflectivity 

The acoustic impedance measurement tube can be used to measure both the 

pressure reflection coefficient as well as the surface acoustic impedance by measuring the 

complex incident and reflected pressure at a single point near the middle of the tube. In 

this case the driver is used to produce a short duration pulse instead of the continuous 

white noise used earlier in this chapter in C.l. 
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Speaker X=-X3 

I 
X=-X3 X=-X, 

2 

+X 

Microphone is installed 
at position X=-X3 

t 
X=0 

Figure 5. Acoustic impedance tube alignment for reflectivity measurement. 

As schematized in Figure 5 above, one of the two microphones installed in the 

middle of the tube is designated to be in the x3 position. If desired, for this experiment, a 

blank cover may be installed over the xi and x2 microphone positions. 

The following describes the measurement of the pressure reflection 

coefficient of a given material. Starting with the following equations expressing the 

superposition of the incident and reflected wave at a given point in the tube: 

Sp(x,t) = Sp+e^'-^e-"* + Sp-ei(a,+k:)e j(at+kx)    ax (Equation 36) 

so        tp(x,t) = 5p+e}to!{e-ilx + Re;&] (Equation 37) 
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where k =k + ja (Equation 38) 

and£ = -^- (Equation 39) 

where <5j5+and dp    are the complex pressure amplitudes of the incident and 

reflected waves, respectively. 

We define the complex wave number in Equation 38 (as we did in Equation 

20) and the complex reflection coefficient in Equation 39. Alpha is defined as the 

attenuation coefficient. It can be shown that: 

£ = 
zbdy    Poc (Equation 40) 
ZtdV + Poc 

where poc is the characteristic impedance of air based on conditions in the acoustic 

impedance measurement tube. If the complex wave number is known, then from 

measurements of the complex pressure at point x3 alone, assuming incident and reflected 

waves are separated in time, the following results: 

Sp™ =8?*eJa,eiixi (Equation 41) 

5pf = dp'~ejmV**1 = RSp+eJa"e-j^ (Equation 42) 

where Sp'3"
c and Sp™*1 are the incident and reflected pressures at X3, respectively. 

From above, it follows: 

Tl— = Re-2^3 (Equation 43) 
Sp mc 
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and:   R = ^i_ x e2^3 = ^1_ x e2J**, (Equation 44) 
5p? ft 

föreß 

where —— is the measured microphone voltage ratio. 
ft'nc 

The exponential factor in Equation 44 may be obtained by measuring the complex 

voltage ratio of the reflected pulse to the incident pulse for the case where the complex 

reflection boundary has a reflection coefficient equal to one. This would be in the case of 

a perfectly rigid surface at the end of the acoustic impedance measurement tube. Using 

this technique, the complex reflectivity is determined by: 

,<5v re/7 

  V / •Sv"If    'sample 
R         (Equation 45 - Reflectivity Equation) 

samp a ,g$rcfi 
(0V       / 1 V / srr mc / rigidwall 

where the subscripts "sample" and "rigid wall" indicate the reflection boundary 

condition. Note it is important that the incident and reflected signals be referenced to the 

same zero of time. 

A procedure was developed, using a dynamic signal analyzer, to apply a brief 

pulse excitation to the loud speaker, and to isolate a single occurrence of incident and its 

associated reflection. This procedure is covered in detail in Chapter III and Appendix J. 

2.        Measurement of Acoustic Impedance 

Having calculated the reflectivity using Equation 45, it is a rather simple matter to 

calculate the acoustic impedance of the sample from this using Equations 21a and 22: 

2rd =^L = 1 + jW* (Equations 21 a & 22) 
p0c     1 — Rsample 
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3. Using   One   Microphone   Impedance   Measurement   Theory   in   a 
Computer Program 

Using the theory described above, the procedure described above obtains the real 

and imaginary parts of the numerator and denominator ratios depicted in Equation 45 to a 

floppy disk. These files can be subsequently downloaded into a MATLAB program that 

calculates and plots the real and imaginary parts of a material's reflectivity as a function 

of frequency. This program also computes the acoustic impedance from the reflectivity 

using Equation 22 and plots it as well. 
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III.    DEVELOPMENT OF THE APPARATUS 

A.        ACOUSTIC IMPEDANCE MEASUREMENT TUBE DESCRIPTION 

The new acoustic impedance measurement tube is approximately one meter long, 

with a two-inch (5 cm) diameter. It is mounted on two wooden brackets for support. On 

one end of the tube a compression hom driver is screwed firmly into place. The acoustic 

impedance tube is shown in Figure 6. 

Figure 6. Shown above is the new acoustic impedance measurement tube. 

On the opposite end of the tube the end cap sample holder (a calibration cup or a 

blank may be installed as well) is fastened into place by the retention ring. These are 

shown below in Figure 7. 

Figure 7. End cap blank is featured along with the retention ring. 
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The acoustic impedance tube contains two pairs of microphones. One pair is 

mounted on the top middle of the tube while the other pair is installed very- close to the 

sample end of the tube. A junction box is fastened into place near each microphone pair 

on the top of the tube. The junction box contains 1/8" phone jacks, into which the 

microphone plugs are inserted. It also contains a nine-volt battery that supplies power to 

the microphones. They are energized and de-energized by means of a micro-miniature 

toggle switch on the front of the junction box. On each side of the junction box are BNC 

connectors that provide the output signal from each microphone. The full acoustic 

impedance tube assembly is shown below in Figure 8. 

Figure 8. The acoustic impedance tube assembly is shown along with the dynamic 
signal analyzer in the foreground under the oscilloscope. The speaker/driver is installed 

on the tube on the right hand side. The sample cup is installed on the left hand side. 
Amplifier is shown under the impedance tube. The two junctions boxes are on top of the 

tube. 

Schematic drawings for the acoustic impedance measurement tube and its parts 

are contained in Appendix F. 

B.        SELECTED    COMPONENTS    OF    THE    ACOUSTIC    IMPEDANCE 
MEASUREMENT TUBE 

1. Microphone 

The  microphone  selected  for the measurements is the Mouser Electronics 

25LM045, a small, rugged, electret microphone with a 0.39-inch diameter (1 cm). The 
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microphone is pictured below in Figures 9 and 10. The manufacturer specifications for 

this microphone are included in Appendix A. From Appendix A, the nominal sensitivity 

level of the microphones is -63 decibels referenced to one volt per microbar of pressure. 

Figure 9. Front-end view of Mouser Electronics microphone pair. 

Figure 10.       Reverse view of Mouser Electronics microphone pair. 

The basic microphone circuit is also exhibited in Appendix A. These 

microphones are very sensitive, and are easily overdriven. Safe operating limits were 

established such that the microphone second harmonic distortion did not exceed one 

percent. These measures are described in detail below. 
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a. Second Harmonic Distortion 

During the experimentation, described later in Chapter IV, it was noted 

that, with only several tenths of a volt rms drive to the speaker, there was significant 

distortion of the measured signals (and therefore errors in the acoustic impedances 

calculated from these signals). This distortion occurred for both drivers tested. Reducing 

the voltage applied to the drivers to a value of 50 mV rms improved the results 

dramatically. The source of the distortion was traced to the microphones overloading. 

To investigate this phenomenon more thoroughly, an experiment was 

arranged where the Mouser microphones were placed in their calibration position (flush 

against the end of the tube as described later in this chapter) along with a laboratory 

precision microphone. One of the Mouser microphones was monitored on one channel of 

a dynamic signal analyzer, while the precision microphone (Larson-Davis !4-inch) was 

monitored on the other channel. A narrow band, power spectrum, single frequency sine 

wave was sent to the driver (Selenium DH200E). The magnitude of each microphone 

output voltage was monitored. The magnitude of the second harmonic component was 

compared to that of the fundamental. 

The voltage of the driving sine wave was increased until the magnitude of 

the second harmonic component from the Mouser microphone reached a level of 40 

decibels down (one percent) from the fundamental. Table 1 displays the results of these 

measurements, where six frequencies were tested. The (broadband) rms voltage of the 

driving signal was recorded using a voltmeter. The Mouser microphone output signal 

(broad band rms) was also recorded using an oscilloscope. Figure 11 displays this 

information graphically. 
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FREQUENCY APPLIED VOLTAGE TO 

SELENIUM DH200E 

DRIVER (RMS) 

MOUSER MICROPHONE 

BROAD BAND RMS 

OUTPUT VOLTAGE 

256 Hz 38.5 mV 20 mV 

496 Hz 116.7 mV 30 mV 

922 Hz 214.5 mV 59 mV 

1008 Hz 73.4 mV 43 mV 

2016 Hz 72.0 mV 35 mV 

3008 Hz 295.7 mV 35 mV 

Table 1. Measured driving voltages required to produce second harmonic distortion 
to a level of one percent. 

The above distortion measured in this experiment arises due to both 

loudspeaker and microphone non-linearity. This was, in fact, verified, by noting a non- 

negligible second harmonic component in the reference microphone signal. Loudspeaker 

non-linearity has no impact on the measurement of acoustic impedance with the 

apparatus. Hence, these distortion levels represent worst cases. 

For further experiments, broadband speaker drive levels were maintained 

at a value of 35 mV rms, and so to ensure the resulting acoustic pressure measurements 

contained less than one percent second harmonic distortion. 
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Voltage vs Frequency Required to Excite -40dB Second Harmonic Distortion 
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Figure 11.       Voltage required to excite one percent or -40dB second harmonic 
distortion plotted as function of frequency. 

What is important to note is that, regardless of the quality of the driver or 

speaker, if the microphones are high quality linear devices, they are able to accurately 

measure the sound field of the impedance tube. The acoustic impedance is determined by 

successfully measuring the pressure in the tube. If the microphones, however, distort the 

signal, the measurements don't represent reality. The conclusions, therefore, become 

erroneous. The one percent distortion described earlier represents both the speaker and 

the microphone distortion. The pressure measurements, therefore, should have less than 

a one percent error. The errors in the specific acoustic impedance extracted from 

measured pressure differences, of course, will be greater. They are also frequency 

dependent. 
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2.        Microphone Power Supply Assembly 

Each junction box in the acoustic impedance measurement tube apparatus is 

designed to supply power to two microphones, receive each microphone's signal, and 

output these signals via their respective BNC connectors. The signals are fed from the 

junction box BNC connectors into channels one and two of the Stanford Research 

Systems 785 dynamic signal analyzer for analysis. 

Power is supplied to the microphones from a nine-volt dc battery (each via a 1000 

ohm resistor). The Thevenin equivalent circuit source impedance of the microphones is 

approximated to be 1000 ohms. The selection of the capacitor is based on ensuring the 

impedance of the capacitor is well below the 1000 ohm impedance associated with the 

microphone:            « lkQ .   As a result:  C» =  (capacitance , C, y 2nfC 2^1000    24 

is expressed in microfarads and frequency,/ is expressed in kilohertz). For a 3dB drop 

in frequency to occur at 10 Hz, capacitance must be approximately sixteen microfarads. 

A twenty-two microfarad capacitor is used in the circuit. 

Since the 3dB down frequency is  , using a one kilo-ohm resistor and a 
InRC 

twenty-two microfarad capacitor results in a -3dB frequency of about eight hertz. This is 

acceptable because the operating frequencies in the spectrum will be above eight hertz. 

A table is included in Appendix B documenting the parts used in assembling these 

junction boxes. The junction box used is exhibited in Figures 12 and 13 below. 
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Figure 12.       External close up view of microphone power supply junction box. 

Figure 13.       Internal view of junction box assembly including 9-volt battery. 

3.        Driver (Speaker) 

The purpose of the driver is to provide a source of acoustic planar waves over a 

range of frequencies inside the acoustic impedance measurement tube. These waves will 

propagate inside the impedance tube and be measured by the microphones described 

earlier. The signal provided to the driver may originate from the SR-785 dynamic signal 

analyzer or the HP-3314A function generator (usually both signals are sent to the driver 

via an amplifier) depending on which measurement is being performed.   Normally, for 
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the two-microphone measurement, a continuous, band limited white noise signal is 

provided from the SR-785. The HP-3314A normally provides a pulsed signal for the 

transient one microphone measurement. These techniques will be discussed further later 

in this chapter in part C. Having a driver that provides good, clean signals from 0 to 4 

kHz (the lowest cut-off frequency for non-planar modes) is very important for the 

measurement. As a result, several drivers were tested to determine which one is best 

suited for the application described above. 

a. Drivers That Were Tested 

The following commercial drivers were tested in the manner that will be 

described subsequently: the Dayton Loudspeaker Company 260-098 horn driver; the 

Reflex Driver Unit; the Motorola KSN1142A horn driver; the Motorola DSN 1197A 

compact horn driver; the Selenium DH200E titanium compression driver; the Selenium 

tweeter compression driver; the University Sound 1828R reentrant driver; and the 

Selenium D-250 driver. Each of these drivers was very carefully evaluated. The best of 

these drivers were subsequently installed on the acoustic impedance measurement tube 

for impedance measurements. 

b. How the Drivers Were Tested 

Several compression horn drivers were evaluated for their suitability, 

using a test microphone (a high accuracy one-half inch microphone manufactured by 

Bruel and Kjaer) and a HP-35665 dynamic signal analyzer. The evaluation was 

performed in an anechoic chamber. Each driver was placed in a holder to radiate 

approximately 3 meters from the test microphone. The driver was fixed and facing the 

microphone.  The Hewlett-Packard HP-3314A function generator or HP-35665 dynamic 

signal analyzer provided the test signal to the driver via a Techron 5507 power supply 
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amplifier.   The signal received by the microphone was input to the HP-35665 dynamic 

signal analyzer. The test was set up as shown below in Figure 14. 

Anechoic Chamber 

Driver Microphone 

H 

3m 

Oscilloscope 

Dynamic Signal 
Analyzer 

Function 
Generator 

=8 

Figure 14.        This is the set up for driver testing in the anechoic chamber. 

First each driver was tested with a transient one-volt signal (a lA cycle of a 

4 kHz cosine waveform) originating from the HP-3314A function generator and 

amplified via the Techron amplifier. The pulse was observed in the time domain on the 

HP-35665 dynamic signal analyzer. The display was immediately printed out and saved 

to a floppy disk by the HP-35665. Using the same signal, the time transient response and 

the narrow band frequency response magnitude spectrum were observed on the HP- 
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35665 (in the Fast Fourier Transform, FFT, mode) over a spectrum of 0 to 25.6 kHz. 

This display too, was immediately printed out and also saved electronically to a floppy 

disk. 

Next each driver was tested with a swept sine signal provided by the HP- 

35665 dynamic signal analyzer via the Techron amplifier. The frequency response was 

monitored using the same analyzer over a spectrum from 50 Hz to 6 kHz. The display 

was plotted out on both a linear and logarithmic scale. Both displays were saved 

electronically to a floppy disk. During both procedures, the oscilloscope monitored both 

the input signal applied to the driver as well as the output signal measured by the 

microphone. This provided a very important back up indication to ensure the testing was 

conducted properly. 

In summary, the following data were recorded for each driver: applied 

signal from the function generator to the driver, time-transient response received by the 

microphone (with dynamic signal analyzer in Fast Fourier Transform (FFT) mode), the 

time transient frequency response received by the microphone (over a range of 64 Hz to 

25.6 kHz with dynamic signal analyzer in FFT mode), and the frequency response 

magnitude on both a linear and logarithmic scale (over a range of 50 Hz to 6.0 kHz with 

the dynamic signal analyzer in Swept Sine mode). These results were very closely 

compared to determine which driver had the most desirable properties. These results are 

presented next. 

c. Driver Test Results 

First, the response to the applied transient signal was compared for each 

driver.     Each  exhibited  varying  amounts  of "ringing",  which  is  an undesirable 
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characteristic of the output. Ideally the driver should generate a single pulse, with no 

ringing. Testing revealed that the Selenium DH200E titanium compression driver, shown 

below in Figure 15, exhibited the least amount of ringing of all units tested. Additionally 

the Selenium DH200E displayed acceptable frequency response characteristics over a 

band of frequencies that would be employed in the acoustic impedance measurement 

tube. The performance of the Selenium DH200E was weaker at the lower frequencies 

(below 500 Hz). Since frequencies greater than 4 kHz were not to be used during 

impedance measurements (due to the non-planar wave propagation discussed in II.B), 

results above this frequency were disregarded. The results of the Selenium DH200E 

testing are shown, in Appendix C. The manufacturer specifications for the Selenium 

DH200E are included in Appendix D. 

Figure 15.       This is the Selenium DH200E driver. 

It is important to note that although the Selenium driver exhibited the least 

amount of "ringing". The University Sound 1828R reentrant driver exhibited slightly 

better output at the lower frequencies. As a result, the University Sound driver was also 

used in the later experiments. The measurement results using it will be compared to 

those of the Selenium driver in Chapter IV. The trade off here is better low frequency 

output for increased "ringing" by the driver.  The results of the University Sound 1828R 



testing are shown in Appendix E.   The manufacturer specifications for the University 

Sound 1828R are included in Appendix F. 

C        PROCEDURES 

1.        Computing Speed of Sound and "Absorption of the Day" 

Essential to accurately measuring the acoustic impedance is a proper 

measurement of both the speed of sound and the absorption coefficient. The importance 

of the accurately knowing the speed of sound is evident in Equations 21a and 35 when 

relating the relative acoustic impedance to the boundary acoustic impedance. We 

measure the former, but are able to compute the latter with a good speed of sound 

measurement. The absorption is important in accurately determining the complex wave 

number as can be seen in Equations 20 and 42 shown earlier. Both of these parameters 

can vary depending on a number of factors. 

Using the same settings described in below in C.3 for the HP-3314A function 

generator in the microphone calibration procedure, the speed of sound may be obtained as 

well as the absorption coefficient of the day. In this case the microphone calibration cup 

is replaced on the end of the acoustic impedance measurement tube with the blank rigid 

boundary assembly. Both microphones are installed in their normal position in the near 

center of the acoustic impedance measurement tube. 

Data are collected using the SR-785, triggered externally from the HP-3314A 

function generator such that the direct and first reflected pulse are measured. The speed 

of sound, c, may be very easily measured using the relationship: 

c - z  (Equation 46) 
At 



where "<f" is the distance from the microphone to the reflection boundary, "r" is 

the time measured between the arrival of the direct and reflected pulses. The absorption 

coefficient may be obtained from measurement of the pressure amplitudes of the direct 

(Pdir) and reflected (P ,) pulses using the following relationship: 

p 
e-2ad _ _jk_ (Equation 47) 

By solving for "of, the absorption coefficient may be readily obtained. 

2.        How the Samples Are Mounted 

Prior to beginning the acoustic impedance measurement procedure, it is necessary 

to briefly introduce how the samples are mounted in the impedance tube. A 2- inch (5 

cm) diameter sample of the material is cut from a bulk quantity. The sample is 

approximately 1.3 cm deep. This sample is inserted into a sample holder so its reflecting 

surface is flush with the flange of the holder. This holder is essentially an end piece with 

a void machined into it for insertion of the sample. 

The sample holder is screwed into the end of the acoustic impedance 

measurement tube, opposite the driver assembly, using the retention ring. Figure 16 

illustrates the microphones on the acoustic impedance measurement tube, aligned for 

sample measurement, just prior to the installation of the sample holder. The sample 

holder containing a ceiling tile sample is shown in the foreground, along with the 

retention ring. 
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Figure 16.       Microphones are installed in their sample measurement position. The end 
cup sample holder and the retention ring are featured in the foreground prior to 

installation. 

3. Two-Microphone    Continuous    Excitation     Acoustic    Impedance 
Measurement 

Having selected the essential components for the acoustic impedance tube, it is 

now time to present the procedures used in impedance measurement, starting with the 

two-microphone method. As mentioned earlier, the following components were used 

throughout the procedure: the acoustic impedance tube assembly (and its related 

components), an HP-467A amplifier (or a Techron 5507 amplifier), a voltmeter, a 

Stanford Research Systems Model SR-785 two-channel dynamic signal analyzer, and a 

Phillips PM-3384 oscilloscope. These components are assembled as shown below in 

Figure 17. 
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Figure 17.        Acoustic impedance tube and associated equipment are set up in this 
configuration for an impedance measurement using the two-microphone continuous 

excitation method. 

a. Microphone Calibration Procedure 

In order to obtain an accurate acoustic impedance measurement, it is 

necessary to calibrate the microphones.   (Actually only a relative calibration is required 

as explained further below.) There are several methods for doing this. 

One method is to compare the Mouser Electronics 25LM045  to a 

calibrated reference microphone by using a transient signal. It could also be done using a 
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continuous signal. The first step of this procedure is to ensure that both microphones are 

installed in the specially designed microphone calibration cup. This cup is illustrated 

below in Figure 18. The normal microphone access used for impedance measurement (at 

the top end of the tube) will be covered with a blank cover. This enables both 

microphones to be nearly flush with the reflection boundary of the acoustic impedance 

tube so their responses may readily be compared. 

Figure 18.       Microphone cup holder with test microphone inserted. 

A Hewlet-Packard HP-3314A function generator and a power amplifier 

are used to provide the signal to the driver. The function generator is set to a one-balf 

cycle "N" cycle burst mode, with the phase set to plus or minus 90 degrees, so the 

extrema of each half cycle are at the beginning and end of the burst. The HP-3314A 

frequency is nominally set to just below the first non-plane wave tube cutoff frequency 

(previously calculated to be approximately 4 kHz). The repetition rate is set at about 10 

Hz to ensure incident and reflected pulses have adequately decayed prior to transmission 

of the next function generator pulse. 
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Data acquisition is achieved using the Stanford Research Systems SR-785 

dynamic signal analyzer, which shall be referred to as the "SR-785". Data acquisition is 

triggered by the synchronous output of the HP-3314A. Triggering is set to coincide with 

the rising edge of the signal transmitted by the driver. (This is falling edge of the TTL 

trigger signal). Data acquisition is set to capture only the first arrival. It is important to 

note that, although this method can be used to calibrate each microphone prior to making 

a measurement, it is not actually needed nor used for the experimentation that followed. 

A simpler method is used that is discussed below. The technique mentioned above, 

however, may be used as an alternative. 

The second method for calibrating the microphones is a much simpler 

approach that does not require a calibrated reference microphone. Essentially, an 

absolute calibration of each microphone is not needed. Only a reference calibration 

between the two microphones is needed. Recall, from Equations 15, 16, and 17, that 

ratios of microphone voltages are measured which are directly proportional to the 

acoustic pressures. These ratios are used in the acoustic impedance calculation as shown 

in Equations 18, 30, and 31. This technique is provided in the laboratory procedure 

illustrated in Appendix J. Instead of using a transient signal, a steady state, continuous, 

band-limited white noise signal is used. In this case the two microphones are placed at 

the end of the impedance tube in the specially designed microphone calibration cup 

previously described with the test microphone fitting blanked off. Figure 19 illustrates 

the microphones on the acoustic impedance measurement tube aligned in the calibration 

position. Instead of using the Hewlett-Packard HP-3314A function generator, a band- 

limited, white noise signal is generated by the SR-785 analyzer using the settings 
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downloaded electronically from the file "REM.78S". As mentioned earlier, these 

settings are extensively provided for reference in Appendix G. It is very important to 

ensure drive signal is below 50 mV mis to avoid second harmonic distortion. 

The response of each microphone should ideally be the same, but, due to 

manufacturing differences, there will be slightly varying phases and amplitudes over a 

broad frequency range. Using the averaging and automatic scaling features of the SR- 

785, the real and imaginary parts of the quotient of the microphone voltages are saved 

and downloaded as two separate ASCII files to a floppy disk. This quotient or ratio was 

discussed earlier in Chapter II as the frequency response ratios FR1 and FR2, (complex 

constants). 

Figure 19.       Microphones are aligned for calibration. Notice junction box has been 
advanced to support this alignment. 

b. Sample Data Taking Procedure 

Having saved the calibration data as describe in part a, the calibration cup 

is removed from the end of the tube. One can now measure as many samples as desired 
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without having to repeat the calibration between samples.   (It is recommended that a 

calibration be performed at the beginning of each lab session.) 

The two-microphone holder is unscrewed from the calibration cup. The 

microphones and junction box are repositioned to their normal measurement position. 

The microphone plate is bolted into the opening where the blank had previously been 

installed during the calibration procedure. The end of the acoustic impedance tube 

assembly should now look like Figure 20 shown below. 

, ,.~M 

Figure 20.       Microphones and junction box are returned to their normal sample 
measurement position. The sample cup and retention ring are removed. 

Now the sample cup (containing a sample) is fastened to the end of the 

impedance tube. Again, the same band-limited, white noise signal is generated by the 

SR-785 analyzer (via the amplifier and driver) using the settings downloaded 

electronically from the file "REIM.78S". Using the averaging and automatic scaling 

features of the SR-785, the real and imaginary parts of the quotient of the microphone 

voltages are saved and downloaded as two separate ASCII files to a floppy disk just as in 
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the calibration procedure. This quotient or ratio was discussed earlier in Chapter II as the 

frequency response ratios FR1 and FR2, (complex constants). 

The simple steps described above may be repeated for as many samples as 

desired and even an "open tube" measurement (where the sample cup is removed and the 

tube is left open to the atmosphere). The final step is to take the series of ratios saved to 

the disk under several files and use the previously mentioned MATLAB programs to 

compute and graphically plot the real and imaginary parts of the acoustic impedances. 

This is discussed next. 

c. Processing the Sample Data Using MA TLAB 

As mentioned earlier, three MATLAB programs were developed to 

compute the acoustic impedance using the two-microphone continuous excitation 

technique. The programs function identically except that each uses a different equation 

for determining the acoustic impedance. The "Impedance.4" program computes the 

acoustic impedance using the Basic Equation (Equation 18). The "Impedance.5" and 

"Impedance.6" programs use the Low Frequency Equation (shown as both Equations 31 

and 35) and the Exact Equation (Equation 30), respectively. A brief illustration of how 

these programs work is now provided, using the "Impedance.6" program aä an example 

where the Selenium DH200E driver is used with a speckled ceiling tile sample. 

The program initially requests the user to input the file containing the real 

part of the microphone "calibration" data, that is the data from the real part of the 

microphone (that will be at position xy during the sample measurement) voltage divided 

by microphone (that will be at position xj during the sample measurement) voltage, when 

microphones are aligned in the calibration position. It reproduces the SR-785 trace as the 
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MATLAB plot shown in Figure 21. The program next requests the user input the file 

containing the imaginary part of the same ratio of the microphone voltages described 

above, when aligned in the calibration position. It reproduces the SR-785 trace as the 

MATLAB plot shown in Figure 22. After each plot, the user is asked to confirm that the 

plot matches what was viewed on the SR-785 during data gathering. 

Real Part of Microphone #2 0/P Volt./Microphone #1 0/P Volt. vs. Freq. (Cal Position) 
1.6 

1000 1500        2000        2500 
Frequency (Hz) 

3500 

Figure 21.       Real part of ratio of the microphone's output voltages is shown where 
microphones are in the calibration position. 
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Imag. Part of Microphone #2 O/P Volt./Microphone #1 O/P Volt. vs. Freq. (Cal Position) 
0.35 

500 1000   1500   2000 
Frequency (Hz) 

2500   3000   3500 

Figure 22.       Imaginary part of ratio of the microphone's output voltages is shown 
where microphones are in the calibration position. 

At this point the program requests the user to input the file containing the 

data from the real part of the microphone at position X2 voltage divided by microphone at 

position xj when microphones are aligned in their normal position at the end of the tube 

with a sample installed. It reproduces the SR-785 trace as a MATLAB plot shown in 

Figure 23. The program next requests the user input the file containing the data from the 

imaginary part of the microphone at position x? voltage divided by microphone at 

position xj when microphones are aligned in their normal position. It reproduces the SR- 

785 trace as the MATLAB plot shown in Figure 24. After each plot the user is again 

asked to confirm the plot matches what was viewed on the SR-785 during testing. 
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Real Part of Microphone #2 O/P Volt./Microphone #1 O/P Volt. vs. Freq. (Sample Position) 
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Figure 23.       Real part of ratio of the microphone's output voltages is shown where 
microphones are in their normal position at top end of tube with sample installed. 

Imag. Part of Microphone #2 O/P Volt./Microphone #1 O/P Volt. vs. Freq. (Sample Position) 
0.35 r 

1500        2000 
Frequency (Hz) 

3500 

Figure 24.       Imaginary part of ratio of the microphone's output voltages is shown 
where microphones are in their normal position at top end of tube with sample installed. 

At this point all the required data has been entered, so the program 

requests the user input the name of the sample used.   When this step is complete, it 
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rapidly calculates the normalized acoustic impedances using the Exact Equation, and 

provides four graphs. The first two graphs are of the real and imaginary parts of the 

acoustic impedance over a frequency range from 0 to 3.2 kHz, shown in Figures 25 and 

26. The final two graphs are plots of the real and imaginary parts of the acoustic 

impedance, plotted on one graph and of the real versus imaginary parts of the acoustic 

impedance. These are shown in Figures 27 and 28, respectively. 

Real Part of Acoustic Impedance vs. Frequency For Speckled Ceiling Tile 
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Figure 25.      Real part of the acoustic impedance is plotted against the frequency for the 
speckled ceiling tile sample. 
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Imaginary Part of Acoustic Impedance vs. Frequency For Speckled Ceiling Tile 
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Figure 26.       Imaginary part of the acoustic impedance is plotted against the frequency 
for the speckled ceiling tile sample. 

Real and Imaginary Parts of Acoustic Impedance vs. Freq. For Speckled Ceiling Tile 
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Figure 27.       Real and imaginary parts of the acoustic impedance are plotted against the 
frequency for the speckled ceiling tile sample. 
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Real vs. Imaginary Parts of Acoustic Impedance For Speckled Ceiling Tile 
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Figure 28.       Real versus imaginary parts of the acoustic impedance is plotted for the 
speckled ceiling tile sample. 

4.        One-Microphone Transient Acoustic Impedance Measurement 

Having selected the essential components for the acoustic impedance tube, it is 

now time to present the procedures used in impedance measurement with the one 

microphone transient method. This procedure is provided for reference in Appendix J. 

As mentioned earlier, the following components were used throughout the procedure: the 

acoustic impedance tube assembly (and its related components), the HP-3314A function 

generator, an HP-467A amplifier (uv a Techron 5507 amplifier), a voltmeter, a Stanford 

Research Systems Model SR-785 two-channel dynamic signal analyzer, and a Phillips 

PM-3384 oscilloscope. These components are assembled as shown below in Figure 29. 
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Figure 29.       Acoustic impedance tube and associated equipment are set up in this 
configuration for an impedance measurement using the one microphone transient method. 

a. Absorption Compensation Procedure 

Only one microphone is used (one of the two microphones permanently 

installed in the middle of the tube is selected). This microphone is in the x3 position 

illustrated in Figure 5 back in Chapter H The same microphone measures both the 

incident and reflected pulse; therefore a calibration is not required. However, a 

correction, or compensation, must be made for the absorption that will reduce the 

amplitude of the reflected pulse. Recall from Chapter n.D.l, that the reflection 

coefficient is determined by Equation 45.    By comparing the ratio of incident and 
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reflected pulse signals for a rigid wall boundary against that for any other sample material 

boundary, the effect of absorption is cancelled. 

First a rigid boundary is installed at the end of the impedance tube as 

shown in Figure 30. 

Figure 30.       Rigid impedance tube boundary is shown with its retention ring. 

The following parameters are set in the function generator to produce a 

half cycle burst pulse with N=l cycle: 1 volt amplitude; 4000 Hz carrier frequency; 0 

volts offset; 50% symmetry; negative 90 degrees phase; and N=l cycle. The function 

generator provides a pulsed signal, shown in Figure 31, in the impedance tube. 

•942.1 mVpk 

-70? 
dBVpk t 0 Hz 1.6 kHz 

Pwr Spec 1 Log Mag Hannhg     VecAvg    32 
32 kHz) 

i 

Figure 31. Above is pulsed transient signal and below is its frequency spectrum. 
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The measured signal from the microphone is monitored on the SR-785 

dynamic signal analyzer and the oscilloscope as a back up indication. To set up the SR- 

785 for proper operation, settings are downloaded from a floppy disk file named 

"REFLWTM.78S". These settings are included for reference in Appendix G. This 

provides the ability to apply a rectangular window of adjustable width over any portion of 

a force window time record. This is displayed in Figure 32. With this capability, we are 

able to shift and isolate an incident pulse and its associated reflected pulse on channels 

one and two, respectively, and make Fast Fourier Transform (FFT) frequency response 

measurements. 

B Live '   Os -87.65 uVpk 
60; 

mVpk 

10 
mVpkidiv 

31.19 msf 

Figure 32.       This is the window display on the SR-785 showing incident and reflected 
pulses over time. 

When this is completed, the SR-785 "measurement option" parameter is 

changed from time transient to frequency response. The "REFLWTIM.78S" settings 

enable the ratio of the voltage of the reflected pulse to that of the incident pulse to be 

measured by the dynamic signal analyzer. In fact this is the very ratio that appears on the 

denominator of Equation 45, the Reflectivity Equation. The real and imaginary parts of 

this ratio are saved over the frequency spectrum from 0 to 3.2 kHz on a floppy disk in 

separate ASCII files. The absorption compensation measurements for the one- 

microphone transient excitation method are now complete. 
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b. Sample Data Taking Procedure 

With the compensation complete, the user is free to measure as many 

samples as desired in rapid succession. This is accomplished by removing the rigid 

boundary from the end of the tube and installing a cup containing a sample. When the 

sample is installed, the user does not have to change any settings. In fact, it is important 

that the time delays employed during the compensation measurements remain unchanged 

for the sample measurements. Otherwise, a phase error will be introduced, and possibly a 

magnitude error, as well. The ratio that is now being measured by the SR-785 is again 

the ratio of the voltage of the reflected pulse to that of the incident pulse, but the sample 

is installed. This is the ratio that appears as the numerator in the Reflectivity Equation. 

The real and imaginary parts of this ratio are saved over the frequency spectrum from 0 to 

3.2 kHz on a floppy disk in separate ASCII files. 

The simple steps described above may be repeated for as many samples as 

desired and even an "open tube" measurement (where the sample cup is removed and the 

tube is left open to the atmosphere). The final step is to take the series of ratios saved to 

the disk under several files and use the previously mentioned MATLAB program to 

compute and graphically plot the real and imaginary parts of the acoustic reflectivity. 

This program also computes the acoustic impedance from the reflectivity value. This is 

discussed next. 

c. Processing the Sample Data Using MA TLAB 

As mentioned earlier, a MATLAB program was developed to compute the 

reflectivity and acoustic impedance using the one-microphone transient excitation 

technique. The program functions similarly to the three previously discussed except that 
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it uses a different equation for determining the acoustic impedance. As mentioned 

earlier, it uses Equation 45, the Reflectivity Equation, to calculate the reflectivity of the 

sample over a frequency spectrum of 0 to 3.2 kHz. Additionally the program uses this 

value in Equation 22 to calculate the normalized acoustic impedance. A brief illustration 

of how the Reflectivity program works is now provided using the Selenium DH200E 

driver with a speckled ceiling tile sample. 

The program initially requests the user to input the file containing the data 

from the real part of the microphone measurement of the ratio of the reflected pulse 

voltage over the incident pulse voltage when the rigid boundary is installed. It 

reproduces the SR-785 trace as a MATLAB plot shown in Figure 33. The program next 

requests the user input the file containing the data from the imaginary part of the same 

ratio of the microphone voltages described above when rigid boundary is installed. It 

reproduces the SR-785 trace as the MATLAB plot shown in Figure 34. After each plot 

the user is asked to confirm the plot matches what was viewed on the SR-785 during 

testing. 
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Real Part of Microphone Refl. Volt./Microphone Inc. Volt. vs. Freq. (Rigid Wall) 
9 

1500        2000 
Frequency (Hz) 

3500 

Figure 33.       Real part of microphone reflected voltage over incident voltage with rigid 
boundary installed. 
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Figure 34.       Imaginary part of microphone reflected voltage over incident voltage with 
rigid boundary installed. 
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The program next requests the user to input the file containing the data 

from the real part of the microphone measurement of the ratio of reflected pulse voltage 

over the incident pulse voltage when a sample is installed at the end of the tube. It 

reproduces the SR-785 trace as the MATLAB plot shown in Figure 35. Following this 

the user must input the file containing the imaginary part of the microphone measurement 

of the ratio of reflected pulse voltage over the incident pulse voltage when a sample is 

installed at the end of the tube. It reproduces the SR-785 trace as the MATLAB plot 

shown in Figure 36. After each plot the user is again asked to confirm the plot matches 

what was viewed on the SR-785 during testing. 

Real Part of Microphone Refl. Volt./Microphone Inc. Volt. vs. Freq. (Sample Boundary) 
5 

1500        2000 
Frequency (Hz) 

2500        3000        3500 

Figure 35.       Real part of microphone reflected voltage over incident voltage with 
sample boundary installed. 
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Imag. Part of Microphone Refl. Volt./Microphone Inc. Volt. vs. Freq. (Sample Boundary) 
0.1 
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Figure 36.       Imaginary part of microphone reflected voltage over incident voltage with 
sample boundary installed. 

At this point all the required data has been entered so the program requests 

the user input the name of the sample used. When this step is complete, it rapidly 

calculates the reflectivity using the Reflectivity Equation and from this the acoustic 

impedance using Equation 22. It provides a total of eight graphs. The first two graphs 

are of the real and imaginary parts of the reflectivity over a frequency spectrum from 0 to 

3.2 kHz shown in Figures 37 and 38. The next two graphs are plots of the real and 

imaginary parts of the reflectivity together and of the real versus imaginary parts of the 

reflectivity (not shown). The program then plots the real and imaginary parts of the 

acoustic impedance over a frequency spectrum from 0 to 3.2 kHz shown in Figures 39 

and 40. The last two graphs are plots of the real and imaginary parts of the acoustic 

impedance together and of the real versus imaginary parts of the acoustic impedance. 

These are not shown. 

59 



1.1 
Real Part of Reflectivity vs. Frequency For Speckled Ceiling Tile 
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Figure 37.       Real part of the reflectivity versus the frequency is shown for a speckled 
ceiling tile. 

0.15 
Imaginary Part of Reflectivity vs. Frequency For Speckled Ceiling Tile 
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Figure 38.       Imaginary part of the reflectivity versus the frequency is shown for a 
speckled ceiling tile. 
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Real Part of Acoustic Impedance vs. Frequency For Speckled Ceiling Tile 
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Figure 39.       Real part of the acoustic impedance versus the frequency is shown for a 
speckled ceiling tile. 
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Figure 40.       Imaginary part of the acoustic impedance versus the frequency is shown 
for a speckled ceiling tile. 
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IV.    EXPERIMENTAL RESULTS 

A.       TEST CASE: THE OPEN TUBE 

1.        Expected Open Tube Results Based On Theory 

Before presenting the experimental results, it is necessary to briefly touch on open 

tube theory. This is very important because it provides a theoretical value for acoustic 

impedance with which the measurement techniques previously described may be 

compared. No such theory exists for the sample materials that will be subsequently 

measured. 

The impedance of an open pipe is approximated by an equivalent impedance 

circuit. This circuit consists of a real impedance p0c (the density of air times the speed 

of sound in air) in parallel with an imaginary impedance jcop0leff (the density of air times 

an effective length). (Reference 1) The circuit is shown in Figure 41. 

o_ 
Real Impedance p0c 

o_ 

Imaginary 
Impedance 
jcopoldT 

Figure 41.       Open pipe impedance circuit is presented above. 

The effective length is a property of the pipe diameter and flange end condition. 

From Reference 1, chapter 10, the value for an un-flanged open pipe is 0.6 times the 

radius of the pipe, while the value for a flanged open pipe is 0.85 times the radius of the 

pipe.    The acoustic impedance measurement tube's effective radius lies somewhere 
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between these two values, but it is possibly closer to the flanged open pipe. By referring 

to Figure 20, one can clearly see a substantial difference between the inner and outer 

radius at the end of the impedance tube when it is open. The inner radius measures 5 cm 

while the outer radius measures 9 cm, making it very nearly a flanged open pipe. 

The normalized specific acoustic impedance for an open pipe is shown in 

Equation 48: 

(Equation 48) j^eff /c     _    Jklcff 

p0c    c + jcoleff     l + Jcoleff/    l + jkltf 
/c 

This theoretical value for the acoustic impedance of an open tube will now be compared 

with the measured results. 

2. Open Tube Experimental Results 

Having conducted the acoustic impedance measurement experiment in accordance 

with the documented procedure set forth in Appendix J (using a 50 mV rms signal as 

prescribed), the first results presented are those obtained using the Selenium DH200E 

driver with the impedance tube open at the end. This is one of the most important 

measurements madt, since it is the only one where the actual acoustk impedance 

measurements may be compared with a theoretical value. Figures 42 and 43 illustrate the 

real and imaginary parts of the acoustic impedance measured for an open tube. Plotted 

are curves computed using: the approximation delineated by Equations 31 and 35 (Low 

Frequency Approximation Equation), the exact formula from Equation 30 (Exact 

Equation), and, lastly, the method using the measured reflectivity from Equations 45 

(Reflectivity Equation) and 22. 

64 



Imaginary Part of Acoustic Impedance vs. Frequency For Open Tube, Selenium Driver 
51 —i 1 1 1 1 ■  

■a    J 

CD 

£ 
u   2 

<   1 

S. o 

TO 

2 Mic. LF Appx 

1 Mic. Ref. 

--a-zW4 

2 Mic. Exact 

_i u 

Theoretical (.85a}\ 

500 1000 1500 2000        2500        3000        3500 
Frequency (Hz) 

Figure 42.       Real part of acoustic impedance versus frequency for an open tube using a 
Selenium driver. 
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Figure 43.       Imaginary part of acoustic impedance versus frequency for an open tube 
using a Selenium driver. 
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As one can note from the above two figures, the comparisons are highly favorable 

between measured impedance and theoretical values for all but the two-microphone, low 

frequency approximation results. This is consistent with our expectations, as the low 

frequency approximation is valid only for small values of kx, and the value of kx2 equals 

one for a frequency of 2.1 kHz. Another important thing to note is the close agreement 

between the one microphone transient excitation method (using the measured reflectivity) 

with the two-microphone "exact" technique. A trend that will be increasingly apparent 

throughout the analysis (and those subsequent) is that the performance of the one 

microphone technique degrades at very high and very low frequencies. Typically, at the 

higher frequencies (usually above 2.5 kHz), the real and imaginary parts of the acoustic 

impedance start to oscillate about the "exact" value. 

Presented for comparison are open tube acoustic impedance measurements made 

exactly as described above except that a University Sound driver is used in lieu of the 

Selenium driver. The results are shown in Figures 44 and 45. 
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Real Part of Acoustic Impedance vs. Frequency For Open Tube, Univ. Sound Driver 
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Figure 44.       Real part of acoustic impedance versus frequency for an open tube using a 
University Sound driver. 

Imaginary Part of Acoustic Impedance vs. Frequency For Open Tube, Univ. Sound Driver 
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Figure 45.       Imaginary part of acoustic impedance versus frequency for open tube 
using a University Sound driver. 
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Notice, again, that the two-microphone, exact results compare very favorably with 

the theoretical open tube results. As noted before, the two-microphone low frequency 

approximation is very crude and virtually not usable at frequencies above 1000 Hz. The 

one microphone method degrades considerably above 2.5 kHz. 

Overall, in comparing the Selenium driver with the University Sound driver, it is 

clear from the above figures, that the Selenium driver yields significantly better results at 

the higher frequencies (for example those above 2.0 kHz). The University Sound driver 

yields very slightly better results at the lower frequencies (in this case those below 600 

Hz). In summary, the trend to note is that the Selenium driver yields better overall results 

than the University Sound driver. This is a trend that will continue throughout the 

analyses when material samples are inserted at the end of the tube. 

B.        RESULTS USING SAMPLE MATERIALS 

After   noting   highly   encouraging   results   from   the   open   tube   impedance 

measurements, three sample materials were installed at the end of the tube: a speckled 

ceiling tile sample, an insulation material sample, and a ceiling tile sample with 

perforated holes. These sample materials are pictured below in Figure 46. The following 

results are presented. 
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Figure 46.       Shown from left to right are the three samples measured: an insulation 
sample, a ceiling tile sample with perforated holes (in sample cup), and a speckled ceiling 

tile sample (in sample cup). 

1.        Speckled Ceiling Tile Sample 

After noting highly encouraging results from the open tube impedance 

measurements, a speckled ceiling tile sample was placed in the cup holder at the end of 

the tube. Once again, the procedures documented in Appendix J were followed to obtain 

the acoustic impedance measurements with a 50 mV drive signal used. These results are 

presented using the two-microphone exact and approximation methods and the one- 

microphone measurement derived from the reflectivity described earlier. The results are 

plotted together in Figures 47 and 48 for comparison. 
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Rea Part of Acoust c Impedance vs. Frequency For Speckled Ceiling Tile 
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Figure 47.       Real part of acoustic impedance versus frequency for a speckled ceiling 
tile sample using the Selenium driver. 
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Figure 48.       Imaginary part of acoustic impedance versus frequency for a speckled 
ceiling tile sample using the Selenium driver. 
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Interestingly, the normalized results shown above are significantly different from 

those obtained for the open tube. The approximate formulas from Equations 31 or 35 are 

consistent with the exact measurement up to about 300 Hz before there is significant 

digression. This is to be expected, and occurs consistently throughout the analyses. The 

one-microphone measurement tracks very well with the two-microphone exact 

measurement at frequencies above 1000 Hz for the imaginary part of the acoustic 

impedance (and above 500 Hz for the real part). Lastly the one-microphone 

measurement results are poor below 500 Hz, and can't be used for a valid comparison. In 

fact, significant problems are evident in the one and two-microphone measurements 

below 300 Hz, in that negative values for the real part of the impedance are shown. 

Negative real impedance values are physically impossible for a passive material. The 

one-microphone technique also exhibits slight oscillation at the very highest frequencies 

used (over 2.8 kHz for example). 

2.        Insulation Sample 

The next results provided for analysis are those obtained using an insulation type 

of material that is very similar to the speckled ceiling tile discussed in part B. Not 

surprisingly, the results and trends are very similar as well. Again, a 50 mV drive signal 

is applied to avoid second harmonic distortion of the microphone. The results presented 

are those using the Selenium driver. Again the two-microphone, continuous exact 

(Equation 30) and low frequency approximation (Equations 31 or 35) methods, as well as 

the one-microphone, transient measurement (Equations 45 and 22), are plotted together to 

enable comparison. 
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Real Part of Acoustic Impedance vs. Frequency For Insulation, Selenium Driver 
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Figure 49.       Real part of acoustic impedance versus frequency for an insulation sample 
using the Selenium driver. 
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Figure 50.       Imaginary part of acoustic impedance versus frequency for an insulation 
sample using the Selenium driver. 
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Since the insulation material is similar to that of the speckled ceiling tile analyzed 

in part B, the trends exhibited during the impedance measurements are similar as well. 

The agreement between the one-microphone method and two-microphone methods is 

almost as good as it was in the case of the speckled ceiling tile sample. The one- 

microphone method exhibits slightly more oscillation at frequencies greater than 2.8 kHz 

than it did for the speckled ceiling tile. 

Again, the results for frequencies below 500 Hz were poor for both techniques. In 

addition to this, the values for the real part of the acoustic impedance reached physically 

impossible negative values for the two-microphone technique at frequencies below 300 

Hz. Furthermore, the one-microphone method exhibits enormous divergence at 

frequencies below 300 Hz before reaching very negative values (these are very hard to 

see on Figure 49). 

3. Ceiling Tile Sample (With Hole Perforations) 

The third sample to be tested with the acoustic impedance measurement tube was 

a ceiling tile sample that had hole perforations about 4mm in diameter spaced about 1 cm 

apart in a repeating square pattern. The measurements were made in accordance with the 

procedure documented in Appendix J using the Selenium driver to which a 50 mV signal 

was applied. As mentioned earlier in Chapter I, the measurements were also made using 

the original impedance tube that utilizes the standing wave ratio method pictured in 

Figure 1. Shown below are the acoustic impedance measurement results using both 

techniques.   They are plotted together for comparison in Figures 51 and 52. 
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Real Part of Acoustic Impedance vs. Frequency For Ceiling Tile, Selenium Driver 
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Figure 51.       Real part of acoustic impedance versus frequency for a ceiling tile sample 
using the Selenium driver and a 50 mV signal. 
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Figure 52.       Imaginary part of acoustic impedance versus frequency for ceiling tile 
sample using the Selenium driver with a 50 mV signal applied. 

There is excellent overall agreement between the two-microphone exact and one- 

microphone impedance measurement at frequencies over 500 Hz.   The only exceptions 
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occur on the imaginary acoustic impedance measurement graph at frequencies near 2.0 

kHz and 2.5 kHz where the value briefly "dips" on the one microphone and two- 

microphone methods respectively. Again, the two-microphone approximation method 

deviates significantly at frequencies over 300 Hz. 

Both techniques used on the new acoustic impedance measurement tube compare 

favorably with the measurements using the older acoustic impedance measurement tube 

that utilizes the standing wave ratio method described earlier in Chapter II (although the 

imaginary impedance values deviate somewhat). This is very encouraging because the 

two-microphone method can be performed much more rapidly over a wider range of 

frequencies that the standing wave ratio technique on the other tube. 
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V.      SUMMARY 

A.        CONCLUSIONS 

The purpose of this the investigation described in this thesis was the development 

of an acoustic impedance measurement tube employing fixed microphones that can be 

used quickly to measure the acoustic impedance of any material placed in the cup holder 

at the end of the tube, over a frequency band of 0 to 3.2 kHz. A new laboratory 

experiment was developed using this impedance tube. This experiment used two 

methods for impedance measurement. One method was the two-microphone continuous 

excitation method, and the other was the one-microphone transient excitation method. 

This was accomplished in several steps. 

First a brief review was made of some of the different methods used in acoustic 

impedance measurement. Using basic definitions and theory, three principal equations 

were developed for analysis using two microphones: the Basic Equation, the Exact 

Equation, and the Low Frequency Approximation Equation. Additionally, an equation 

was developed for analysis using one microphone: the Reflectivity Equation. Four 

M/.TLAB programs were developed that use these equations to compute the acoustic 

impedances from the raw laboratory data. 

Next several components were investigated for the acoustic impedance tube: the 

microphone, the junction box/power supply assembly, and the driver. A careful study 

was made of second harmonic distortion in the signal from the Mouser microphone. The 

junction boxes were carefully designed and constructed for optimal conveyance of the 

microphone signal to the dynamic signal analyzer.   Lastly, eight drivers were tested to 
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determine which best suited the needs of the experiment.   Two drivers, the Selenium 

DH200E and the University Sound 1828R, were selected for use. 

Having developed the apparatus and theory, it was necessary to establish a test 

procedure that would integrate these and provide a means for measuring the acoustic 

impedance of a sample material. This was accomplished for the two-microphone 

continuous excitation method and the one-microphone transient excitation method. A 

laboratory handout was produced, to enable students to conduct acoustic impedance 

measurements using this apparatus. 

The final step was to validate the effectiveness of this acoustic impedance 

measurement tube and its developed techniques. This was successfully accomplished by 

making "open tube" measurements and comparing the results to established theory over 

the frequency range of 0 to 3.2 kHz. The measurements made using the two-microphone 

technique and the one microphone technique both compared favorably with the theory. 

Additionally, measurements were made using: an insulation sample, a speckled ceiling 

tile sample, and a ceiling tile sample with perforated holes. Again, the results using the 

two-microphone method and one microphone methods compared favorably with each 

other, and, where available, with the results using the old impedance tube apparatus. The 

Selenium and University Sound drivers were also compared and it was determined that 

the Selenium driver yielded better results overall for this application. 

B.        RECOMMENDATIONS 

Although the acoustic impedance measurement tube was successfully developed, 

along with a useful procedure and software, there are still some modifications that can 

further improve the performance of this apparatus. One is the development of a filter that 
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would improve the acoustic impedance measurement results at the low end of the 

frequency band (below 1000 Hz, for example) by boosting the drive signal at these 

frequencies. Two additional developments that would improve the educational value of 

this apparatus are: cutting of more samples from bulk material and production of a 

Helmholtz resonator for a reflector. Additional samples of a wider variety of materials 

can validate the performance of the apparatus over a wider range of acoustic impedance. 

It is important to note that a Helmholtz resonator can be developed and used with this 

apparatus to demonstrate important acoustic theory. One last area worth exploring is the 

use of a higher quality microphone. Linearity is the most important quality of a 

microphone used in this apparatus; sensitivity is not a problem. Use of a higher quality 

microphone would, no doubt, yield better results. 
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APPENDIX A: MOUSER ELECTRONICS 25LM045 
SPECIFICATIONS 

MOUSER 
ELECTRONICS 
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3 
O c 
CO m 
TO 

</> 
o o 
z 
p 

v?E~ 

<"=gfr 

c= 
t>   Oulpct 

Salt 
HL    _ 

>—>    Grand 

^ 

-+U U 
2iJJr»b»cWo3i.cod 

Dimensions (In.) 

VI 
.'9 = -73cß? 

da 

40 

30 

20 

to 

r> 
10    20 Hs   40     t00   200     'jXi       IKHs 2 

Specifications: 
• Type: elactret condenser 
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• Sensitivir/:  fo3V=1V/ubar @ 1KHz. RL=1KÜ, Vcc=SV: -63 ± 3c3 
• Output irr.pedance: same as the ioad resistance {may be 150Q - 5KÜ =} 
• Directionality: omnicjrectjona; 
• Frequency range: 2O-12.O0OHZ 
• SiK ration: > 40dB. measured with A curve @ 1KHz 1a bar 
• Seif noise level: <34dE S?L (referred SPL 0D?=0.CO02ui>3r} 
• Operation vor3ge: 1.5-T5VDC 
• Current consumption: £ 0.5mA (Supply vtstage 6V; 
• Polarity of power supply: (-) for ground 
• Temperature test after exposure @ SS'C for 1 hr. sensitivity to be within 
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Figure 53.       Mouser microphone data specifications. 
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APPENDIX B:     LIST OF PARTS FOR ACOUSTIC IMPEDANCE 
TUBE 

Item Description Manufacturer/Supplier 

Phone Number 

Part Number 

1/8" Panel mount phone 

jacks 

Radio Shack 

899-2100 

274-251 

Microminiature toggle 

switch, 3A/125VAC, V" 

hole 

Radio Shack 

899-2100 

275-624 

Heavy duty 9V battery snap 

connectors (5 pkg.) 

Radio Shack 

899-2100 

270-324 

Battery Holder Allied Electronics 

(800)-433-5700 

839-1295 

1/8" Phone plugs (2 pkg.) Radio Shack 

899-2100 

274-286 

Metal connector box Allied Electronics 

(800)-433-5700 

806-1870 

Omni directional electret 

condenser microphone 

Mouser Electronics 

(800)-346-6873 

25LM045 
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Selenium DH200E 

Titanium Compression 

Driver 

Parts Express 

(800)-338-0531 

264-225 

BNC bulkhead receptacle 

(jack) 

Amphenol RFX 

(800)-627-7100 

or Amphenol Comm. 

Network and Products Div. 

(203)-743-9272 

31-221-RFX 

(for Amphenol RFX) 

or 999-226B 

(for Amphenol Comm.) 

1000 ohm precision resistor Digi-Key Corporation 

(800)-344-4539 

1.00KXBK-ND 

22 microfarad capacitor Digi-Key Corporation 

(800)-344-4539 

ECS-F1CE226K 

Table 2. List of Parts For Microphone Junction Box Assembly 
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APPENDIX C:     ANALYSIS OF SELENIUM DH200E DRIVER 
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Figure 54.       Selenium driver pulse-excitation time response on the HP-35665. 
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Freq Resp 2:1 
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25.6 kHz 

Figure 55.       Selenium driver pulse-excitation narrow band frequency response on the 
HP-35665 (FFT mode). 
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Figure 56.        Selenium driver pulse-excitation narrow band frequency response on the 
HP-35665 (Swept Sine mode). 
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APPENDIX D:     SELENIUM DH200E DRIVER SPECIFICATIONS 
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Figure 57. Specifications for Selenium DH-200E driver. 
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APPENDIX E:     ANALYSIS OF UNIVERSITY SOUND 1828R 
DRIVER 

Time 2 
0.003 

V 

Real 

-0.003 
0 s 15.60974 ras 

Figure 58.       University Sound driver puise-excitation time response on HP-35665. 
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Figure 59.       University Sound driver pulse-excitation narrow band frequency response 
on the HP-35665 (FFT mode). 
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Figure 60.       University Sound driver pulse-excitation narrow band frequency response 
on the HP-35665 (Swept Sine mode). 
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APPENDIX F: UNIVERSITY SOUND 1828R DRIVER 
SPECIFICATIONS 
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Figure 61.       University Sound Driver product specifications. 
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APPENDIX G:    "REIM.78S" AND "REFLWTIM.78S" SETTINGS 

The "REIM.78S" settings are: 

Input Chi Ch2 

Source Analog Analog 

Config Dual Chan. Dual Chan. 

Mode A A 

Ground Ground Ground 

Coupling AC AC 

Range -6 dBVpk -4 dBVpk 

AA Filter On On 

A-Wt Filter Off Off 

Auto Range Up Only Up Only 

Auto Offset On On 

EU Off Off 

EULabel m/s m/s 

EU/Volt 1EU/V 1EU/V 

User Label EU EU 

Tal 

Tach Level 0.00 V 0.00 V 

Tach Trigger TTL TTL 

Tach Slope Rising Rising 

Tach Holdoff Off Off 

ShowTach Off Off 

Xdcr 

Measure Display A Display B 

Measurement Freq. Resp. Freq. Resp 

View Real Part Imag. Part 

Units 

dB Units Off     Off 
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Peak Units off      off 

PSD Units Off     Off 

Phase Units deg 

dBm Ref 50 

Base Freq 102.4 kHz 

Span 3.2 kHz 

Start Freq 0 Hz 

Lines 200 

Window Harming 

Force 976.563 s 

Expo 50.00% 

Average Display A 

Comp. Avera ige          Yes 

Type Linear / Fix Len 

Display RMS 

Number 256 

Time Incr 100.00% 

Reject On 

Preview Off 

Prv Time 2s 

Display Display A 

Ymax 1.9 

Y/div 100 m 

Xcenter 50 

X/div polar 10 

Ycenter 50 

Y/div polar 10 

Pan 0 

Zoom xl 

Format Dual 

X Axis Linear 

deg 

50 

102.4 kHz 

3.2 kHz 

0 Hz 

200 

Hanning 

976.563 s 

50.00% 

Display B 

Yes 

Linear / Fix Len 

RMS 

256 

100.00% 

On 

Off 

2s 

Display B 

400 m 

100 m 

50 

10 

50 

10 

0 

xl 

Dual 

Linear 
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Grid On On 

Grid Div 10 10 

Grid Type Rectangular Rectangular 

Phase Suppress           O.OOOOe+000 0.0000e+000 

d/dx Window 0.5 0.5 

Marker Display A Display B 

Marker On Link 

Mode Normal Normal 

Seeks Max Max 

Width Spot Spot 

Relative Off Off 

X Relative Off Off 

XRel 0 0 

YRel 0 0 

# Harmonics 1 1 

Display Fundamental Fundamental 

Readout Absolute Absolute 

Sideband Sep 0 0 

# Sidebands 10 10 

Band Exclude none none 

Band 

Waterfall Display A       Display B 

Wfall Displa> ' Normal Normal 

Wfall Storage Off Off 

Storage Mode All All 

Total Count 69 69 

Skip 30 30 

View Count 10 10 

Trace Height 70% 70% 

Angle -30 D -30 D 

Fast Angles Off Off 

Threshold 0% 0% 
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Hidden Lines Invisible Invisible 

Paused Draw Normal Normal 

Source 

Source 0 [0=Off, l=On] 

Type   2 [0=Sine, l=Chirp, 2=Noise, 3=Arb] 

SineFreql      10.24 kHz 

Sine Amp 1     500.0 mVpk 

SineFreq2     51.2 kHz 

Sine Amp 2      0.0 mVpk 

Sine Offset       0.0 mV 

Chirp Amp      1000.0 mV 

Chirp Burst     100.00% 

Source Display Display A 

Noise Amp      1000.0 mV 

Noise Type     BL White 

Noise Burst     100.000% 

ArbAmp 100.00% 

ArbRate 262.1kHz 

Arb Source     Arb. Buffer 

Arb Start 0 

Arb Length        4 kPts 

Trigger 

Arming Mode Auto Arm 

Trigger Source Source 

Trigger Level 0 % 

Trigger Slope Falling 

Delayl 0 s 

Delay2 0 s 

Source Mode  Continuous 

Start RPM       Off 

Start RPM 50 

Delta RPM     Abs. Change 
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Delta RPM 10 

Time Step       100 ms 

Capture 

Capt Channels Chl+Ch2 

Capt Mode      1 Shot 

Capt Length    488 kPts/ch 

Capt Rate       262.1kHz 

Auto Pan        On 

Playback Start 0 

Playback Len   488 kPts/ch 

Playback Mode 1-Shot 

The "REFLWTIM.78S" settings are: 

Input   Ch 1 Ch2 
Source Analo g Analog 
Config Dual Chan.     Dual Chan. 
Mode A A 
Ground Ground Ground 
Coupling AC      AC 
Range -12 dBVpk      -12 dBVpk 
AA Filter On       On 
A-Wt Filter Off     Off 
Auto Range Up Only Up Only 
Auto Offset On       On 
EU      Off Off 
EU 
EU/Volt 1EU/V 1EU/V 
User Label EU      EU 
Tachs/Rev 1          1 
Tach Level 0.00 V 0.00 V 
Tach Trigger TTL    TTL 
Tach Slope Rising Rising 
TachHoldoff Off     Off 
ShowTach Off     Off 
Xdcr 
Measure Display A Display B 
Measurement WinTime 1 WinTime 2 
View   Real Part        Real Part 
Units   Vpk Vpk 
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dB Units Off     Off 
Peak Units pk       pk 
PSD Units Off     Off 
Phase Units deg      deg 
dBm Ref 50                   50 
Base Freq 102.4 kHz       102.4 kHz 
Span   3.2 kHz          3.2 kHz 
Start Freq 0 Hz    0 Hz 
Lines    200     200 
Window Force/Exp       Force/Exp 
Force   2.92969 ms     2.92969 ms 
Expo   50.00% 50.00% 

Average Display A       Display B 
Comp. Average Yes     Yes 
Type   Exp. / Cont.    Exp. / Cont. 
Display Vector Vector 
Number 32       32 
Time Incr 100.00%         100.00% 
Reject On On 
Preview Off     Off 
Prv Time 2s       2s 

Display Display A 
Ymax 350 m 350 m 
Y/div   50 m   50 m 

Display B 

Xcenter 50 50 
X/div polar 10 10 
Ycenter 50 50 
Y/div polar 10 10 
Pan        0 0 
Zoom xl xl 
Format Dual Dual 
X Axis Linear Linear 
Grid    On On 
Grid Div 10 10 
Grid Type       Rectangular    Rectangular 
Phase Suppress 0.0000e+000   0.0000e+000 
d/dx Window        0.5 0.5 

MarkerDisplay A 
MarkerLink    Link 
Mode Normal 
Seeks Max    Max 
Width Spot    Spot 
Relative Off 

Display B 

Normal 

Off 
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X Relative Off     Off 
XRel           C )         0 
YRel          C )         0 
# Harmonics 1       1 
Display Fundamental Fundamental 
Readout Absolute Absolute 
Sideband Sep 0         0 
# Sidebands 10        10 
Band Exclude none    none 
Band 
Waterfall Display A Display B 
Wfall Display Normal Normal 
Wfall Storage Off     Off 
Storage Mode All      All 
Total Count 69       69 
Skip      30 30 
View Count 10        10 
Trace Height 70%    70% 
Angle -3ÖD -30 D 
Fast Angles Off     Off 
Threshold 0%      0% 
Hidden Lines Invisible Invisible 
Paused Draw Normal Normal 

Source 
Source 0 [0=Off, l=On ] 
Type   2 [0=Sine, l=Chirp, 2=Noise, 3=Arb] 
Sine Freq 1 10.24 kHz 
Sine Amp 1 500.0 mVpk 
Sine Freq 2 51.2 kHz 
Sine Amp 2 0.0 mVpk 
Sine Offset 0.0 mV 
Chirp Amp 1000.0 mV 
Chirp Burst 100.00% 
Source Display           Display A 
Noise Amp 500.0 mV 
Noise Type BL White 
Noise Burst 100.000 % 
Arb Amp 100.00% 
Arb Rate 262.1 kHz 
Arb Source Arb. Buffer 
Arb Start 0 
Arb Length 4kPts 

Trigger 
Arming Mode Auto Arm 
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Trigger Source Ext TTL 
Trigger Level 0 % 
Trigger Slope Falling 
Delay 1 1.58691 ms 
Delay24.5166ms 
Source Mode  Continuous 
Start RPM      Off 
Start RPM 50 
Delta RPM Abs. Change 
Delta RPM 10 
Time Step 100 ms 

Capture 
Capt Channels Chl+Ch2 
Capt Mode IShot 
Capt Length 488 kPts/ch 
Capt Rate 262.1 kHz 
Auto Pan On 
Playback Start 0 
Playback Len 488 kPts/ch 
Playback Mode           1-Shot 
Playback Speed          Normal 

Memory 
Capt Memory 489 Blks 
Wfall Memory488 Blks 
Arb Memory 2 Blks 

System 
Output To RS232 
GPDB Address ; 10 
Overide REM Yes 
Bfc'id Rate 9600 bd 
Word Length 8 bits 
Parity None 
Key Click Off 
Alarms On 
Alarm Vol Noisy 
Done Vol Noisy 
Audible Ovid On 
Screen Saver On 
Saver Delay 10 m 
Freq Format Exact Bin 
Node Info No 

Output 
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Print Screen Key        ASCII Dump 
Printer Type   PCX 8 bit 
Bitmap Area   Graphs 
Plotter Type    PostScript 
Destination     Disk File 
GPIB Control SR785 
Plotter Address 2 
Print Bright     12% 
Print Dim       White 
Print Black     Black 
Print Graph    Black on White 
Text Pen 1 
Grid Pen 1 
Trace Pen 1 
Marker Pen        1 
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APPENDIX H: IMPEDANCE MEASUREMENT TUBE 
DRAWINGS 

NOTES: 

1. 

0.325" 

1.680' 

i 

0.920' 

00.624" 
(0.001" UNDER REAMER) 

-03.380". 

s 
-02.500"- 

-03.000"- 

1.325" 

4^0 
.300" MAX. TAP-DRILL DEPTH 
PLCS 

0.350" 

 R0.125" 

0.485"- 

UNLESS OTHERAISESPECiFIED: 

DMENSlCNS ARE IN INCHES 

TOLERANCES: 
DECIMAL XXCCtO 005" 

ANGULAR XJCiO 2* 

MATERIAL: PVC 

JOB: Impedance Tube 

DESIGNER: JayAdeff 

PROJECT ENGINEER: 

Jay Adeff 

CUSTOMER: Steven Baker 

CODE: 
PH 

CODE: 
PH 

CODE: 
PH 

CODE: 
PH/BA 

NAVAL POSTGRADUATE SCHOOL 
PHYSICS DEPARTMENT 

MIC. CAL END-CAP 

LETTER CalCap.vcd 

1 = 11 SHEET 1 OF 1 DATE: 3-5-01 

Figure 63.       Microphone calibration cup drawing. 
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NOTES: 
1. 1/2-13 thread. Use 7/16" flat bottom end-mill for tap drill 
to a depth of 0.475". Run bottoming tap to a depth of 0.400". 

2. Press fit into Mic. Cal. End-Cap (DWG # CalCap.vcd). 

NOTE 1 
K-00.700"- 

NOTE 1- 

0.600" 
0.355" 
J  VÄ       YÄ 

00.625" (NOTE 2)- 

k-4 

0.475" 

-00.281" 

i: '.ESS OTHERWISE SPECIFIED 
D MENSIONS ARE IN INCHES 

TOLERANCES 
DECIMAL X.XXX'tO 005' 

ANGULAR X.X'iO 2' 

MATERIAL:  PVC 

QUANTITY:  1 

JOB:  IMPEDANCE TUBE 

DESIGNER: JayAdeff 

PROJECT ENGINEER: 

Jay Adeff 

CUSTOMER:  S. Baker 

CODE: 
PH 

CODE: 
PH 

CODE: 
PH 

CODE: 
PH/Ba 

NAVAL POSTGRADUATE SCHOOL 
PHYSICS DEPARTMENT 

TITLE: 

CAL. MIC. BOSS 
SIZE: 

LETTER 
DWG No. 

CalMicBoss.vcd 
FINISH: N/A DATE: 3-5-01 REV: 1 SCALE 1   =   1 SHEET    1   OF   1 

Figure 64.       Calibration microphone end fitting drawing. 
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NOTES: 
1. Use standard 1/2-13 nylon cap-head bold. Reduce head to dimensions shown. 

0.625" (NOTE 1)- 

O 

0.830' 0.100" 

00.400-. 

UNLESS OTHERWISE SP< "IFIED: 
DIMENSIONS ARE IN INCKfS 

TOLERANCES: 
DECIMAL X XXX"±0.005" 

ANGULAR X.X'±02* 

MATERIAL: Nylon 

QUANTITY:  1 

JOB: IMPEDANCE TUBE 

PESIGNER: JayAdeff 

PROJECT ENGINEER: 
Jay Adeff 

CUSTOMER: S. Baker 

CODE: 
PH 

CODE: 
PH 

CODE: 
PH 

CODE: 
PH/Ba 

NAVAL POSTGRADUATE SCHOOL 
PHYSICS DEPARTMENT 

TITLE: 

Calibration Mic. Retainer 
SIZE: 

LETTER 
DWG No. 

CalMicRetainer.vcd 
FINISH: N/A DATE: 3-5-01 REV: 1 SCALE 1   =1 SHEET   1   OF   1 

Figure 65.       Calibration microphone retainer drawing. 
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Figure 66.       End cap modification drawing. 
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NOTES: 
1. 

0.925" CL- 

0.390" 
00.388- THRU 

00.116" THRU 

0.700" 

R0.125" 

UNLESS OTHERWISE SPECIFIED 
DIMENSIONS ARE IN INCHES 

TOLERANCES.' 
DECIMAL X.XXX-±0.005" 

ANGULAR X X*±0.2' 

MATERIAL: PVC 

QUANTITY: 2 

JOB: Impedance Tube 

DESIGNER: JayAdeff 

PROJECT ENGINEER: 
Jay Adeff 

CUSTOMER: Steve Baker 

CODE: 
Ph 

CODE: 
PH 

CODE: 
PH 

CODE: 
PH/BA 

NAVAL POSTGRADUATE SCHOOL 
PHYSICS DEPARTMENT 

TITLE: 

MICROPHONE PLATE 1 
SIZE: 

LETTER 
DWG No. 

Mic Platel.vcd 
FINISH: N/A DATE: 12-15-99 REV: 1 SCALE 1   =1 SHEET    !   OF   1 

Figure 67.       Microphone holder plate drawing. 
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NOTES: 
1. 

0.925' 

00.116" THRU 

0.580" R0.125" 

0.115" 

7  
0.485" 

-0.920". 

-0.920". 

0.470" 

r o       o 

o       o 
. R0.125" 

UNLESS OTHERWISE SPECIFIED: 
DIMENSIONS ARE IN INCHES 

TOLERANCES: 
DECIMAL X.XXX"±ö.005" 

ANGULAR XX'10.2' 

MATERIAL: PVC 

QUANTITY: 2 

JOB: Impedance Tube 

DESIGNER: JayAdeff 

PROJECT ENGINEER: 
Jay Adeff 

CUSTOMER: Steve Baker 

CODE: 
PH 

CODE: 
PH 

CODE: 
PH 

CODE: 
PH/BA 

NAVAL POSTGRADUATE SCHOOL 
PHYSICS DEPARTMENT 

TITLE: 

Microphone Plate Blank 
SIZE: 

LETTER 
DWG No. 

Mic Plate2.vcd 

FINISH: N/A DATE: 2-9-01 REV: 1 SCALE 1   =   1 SHEET    1   0F   1 

Figure 68.       Microphone blank cover plate drawing. 
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NOTES: 

1. 

0.145"—>• 

0.260' 

00"  0.580" 

I  

1.990"- 

e-0.700"- 

ö 

00.112-THRU 

o 

0.495" 
0.490" 

0.151" 

R1.190" 

• R0.125" 

0.935" 
0.930" 

0.259" 

UNLESS OTH' ..WISE SPECIFIED: 
DIMENSIONS A~E IN INCHES 

TOLERAKCES: 
OECIMAL X XXX"±0.0C5" 

ANGULAR X.X'±0.2- 

MATERIAL: PVC 

QUANTITY:  1 

JOB: Impedance Tube 

DESIGNER: JayAdeff 

PROJECT ENGINEER: 

Jay Adeff 

CUSTOMER: Steve Baker 

CODE: 
PH 

CODE: 
PH 

CODE: 
PH 

CODE: 
PH/BA 

NAVAL POSTGRADUATE SCHOOL 
PHYSICS DEPARTMENT 

TITLE: 

MIC. PLATE BOSS 
SIZE: 

LETTER 
DWG No. 

MicPlateBoss.vcc 
FINISH:  N/A DATE:  1-7-00 REV: 1 SCALE 1   =1 SHEET   1   OF  1 

Figure 69.       Microphone holder plate drawing. 
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0.485". 

0.325" 

1.680" 

-0 3.380' 

-0 2.500" 

-0 3.000"- 

4-40 
0.300" MAX. TAP-DRILL DEPTH 
4PLCS 

0.350" 

R0.125" 

1.325" 

UNLESS OTHERWISE SPECIFIED 
DIMENSIONS ARE IN NCHES 

TOLERANCES: 

DECIMAL X*XX-*0.00r 
AN&JLAR XX-lOT 

MATERIAL:   PVC 

JOB" Impedance Tube 

DESIGNER: JayAdeff 

PROJECT ENGINEER: 

Jay Adeff 

CUSTOMER: Steven Baker 

CODE: 
PH 

CODE: 
PH 

CODE: 
PH 

CODE: 
PH/BA 

NAVAL POSTGRADUATE SCHOOL 
PHYSICS DEPARTMENT 

SAMPLE BLANK 2 

LETTER 
DWG No. 

Sample Blank 2.vcd 

1 = 1   SHEET 1 OF 1 

Figure 70.       End tube sample holder with microphone access port drawing. 
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NOTES: 

1. 

0 3.380"- 

1.680" 

UNLESS OTHERWISE SPECIFIED: 
DIMENSIONS ARE IN INCHES 

TOLERANCES 
DECIMAL X XXX-10.005" 

ANGULAR X.X-t0.2' 

MATERIAL:   PVC 

QUANTITY:  1 

JOB: Impedance iube 

DESIGNER: JayAdeff 

PROJECT ENGINEER: 

Jay Adeff 

CUSTOMER: Steven Baker 

CODE: 
PH 

CODE: 
PH 

CODE: 
PH 

CODE: 
PH/BA 

NAVAL POSTGRADUATE SCHOOL 
PHYSICS DEPARTMENT 

TITLE: 

SAMPLE BLANK 
SIZE: 

LETTER 
DWG No. 

Sample Blank.vcd 

FINISH: N/A DATE:  1^-00 REV: 1 SCALE 1   =1 SHEET    1   OF   1 

Figure 71.       End tube blank plate drawing. 
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Figure 72.       Acoustic impedance measurement tube drawing. 
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APPENDIX I:      COMPUTER PROGRAMS USED FOR 
IMPEDANCE TUBE 

1.   The following program is called "Impedance.5", run on the MATLAB R12 

version. It uses the approximation outlined from Equations 31 and 35: 

%This program is designed to compute acoustic impedance given 4 
data files obtained 

%from the microphone calibration and a measurement using a sample 
installed 

%at the end of the tube. A second more detailed approximation is 
used. 

clear 
n=l; 
while n==l 

dispC     ') 
disp ("The first graph will display the real part of the ratio 

of) 
disp('Microphone #2 output voltage over Microphone #1 output 

voltage') 
disp('with the Microphones in the calibration position.') 
dispC     ' ) 
disp ('Please type in name of your file in which this data is 

saved.') 
y = input ('Ensure you type file exactly as it was saved. ' , ' s') ,- 
p=eval(['load('' ' y ' ■')']) ; 

figure (1) 
plot (p(:,l) ,p(: ,2) ) 
xlabel('Frequency (Hz)') 
ylabeK'Real Part of Mic. #2 0/P Volt./Mic. #1 0/P Volt.') 
title('Real Part of Microphone #2 0/P Volt./Microphone #1 O/P 

Volt. vs. Freq. (Cal Position)') 

dispC     ') 
disp('Does this graph accurately reflect your trace saved from 

the SRS-785?') 
x=input ('Enter 1 to mean YES, 0 to mean NO ') ,-  %User verifies 

graph is correct 
if x == 0 

disp('     ') %Erroneous graph 
aborts program 

disp('There is an error.') 
disp('Please verify file name typed in correctly') 
disp('and that trace was saved properly on the SRS-785.1) 
break 

end 
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dispC     ') 
disp('The second graph will display the imaginary part of the 

ratio of') 
disp('Microphone #2 output voltage over Microphone #1 output 

voltage') 
disp('with the Microphones in the calibration position.') 
dispC     ') 
disp('Please type in name of your file name in which this data is 

saved') 
yl = input('Again ensure file name is typed exactly. ' , ' s ' ) ; 
pl=eval( ['loadC ' ■ yl ''•)']); 

figure (2) 
plot(pi(:,1),pl(:,2)) 
xlabel('Frequency (Hz)') 
ylabeK'Imag. Part of Mic. #2 0/P Volt./Mic. #1 0/P Volt.') 
title('Imag. Part of Microphone #2 0/P Volt./Microphone #1 0/P 

Volt. vs. Freq. (Cal Position)') 

dispC     ') 
disp ('Does this graph accurately reflect your trace saved from 

the SRS-785?') 
xl=input('Enter 1 to mean YES, 0 to mean NO ') ,- %User verifies 

graph is correct 
if xl == 0 

disp ('     ' ) ^Erroneous graph 
aborts program 

disp('There is an error.') 
disp('Please verify file name was typed in correctly') 
disp('and that trace was saved properly on the SRS-785.') 
break 

end 

dispC     ') 
disp ('The third graph will display the real part of the ratio 

of) 
disp('Microphone #2 output voltage over Microphone #1 output 

voltage') 
disp('with the Microphones in the sample measuremert position.') 
dispC     ') 
disp('Please type in next file name in which your data is saved') 
y2 = input('Again ensure file name is typed exactly. •,'s'); 
p2=eval( ['loadC ' ' y2 '■')']); 

figure (3) 
plot(p2(:,l),p2(:,2)) 
xlabel('Frequency (Hz)1) 
ylabeK'Real Part of Mic. #2 0/P Volt./Mic. #1 0/P Volt.') 
title('Real Part of Microphone #2 0/P Volt./Microphone #1 O/P 

Volt. vs. Freq. (Sample Position)') 

dispC     ') 
disp('Does this graph accurately reflect your trace saved from 

the SRS-785?') 
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x2=input ('Enter 1 to mean YES, 0 to mean NO ') ,- %User verifies 
graph is correct 

if x2 == 0 
disp('     ') %Erroneous graph 

aborts program 
disp('There is an error.') 
disp('Please verify file name was typed in correctly') 
disp('and that trace was saved properly on the SRS-785.') 
break 

end 

disp('     ') 
disp('The fourth graph will display the imaginary part of the 

ratio of') 
disp('Microphone #2 output voltage over Microphone #1 output 

voltage') 
disp('with the Microphones in the sample measurement position.') 
dispC     ') 
disp('Please type in next file name in which your data is saved') 
y3 = input('Again ensure file name is typed exactly. ','s'); 
p3=eval(['load(''' y3 ''')']); 

figure (4) 
plot(p3(:,1),p3 (:,2) ) 
xlabel('Frequency (Hz)') 
ylabeK'Imag. Part of Mic. #2 0/P Volt./Mic. #1 0/P Volt.') 
title ('Imag. Part of Microphone #2 0/P Volt./Microphone #1 0/P 

Volt. vs. Freg. (Sample Position)') 

disp('     ') 
disp('Does this graph accurately reflect your trace saved from 

the SRS-785?') 
x3 = input ('Enter 1 to mean YES, 0 to mean NO '); %User verifies 

graph is correct 
if x3 == 0 

disp ('     ') %Erroneous graph 
aborts program 

disp('There is an error.') 
disp('Please verify file name was typed in correctly') 
disp('and that trace was saved properly on the SRS-785.') 
break 

end 

n=0; % Change n value to exit the 
while loop 

end 

if n == 1 % If above loop aborted n is 
still 1 

disp('Program cannot be completed.  Please try again.') 
else 

disp('     ') 
q = input('Please enter name of sample used: ','s'); 
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frl = p(:,2)+j*pl (: ,2); % Loads in complex ratio from 
calibration 

fr2 = p2(:,2)+j*p3(:,2); % Load in complex ratio from 
measurement 

c = 343.0; % Speed of Sound in air (m/s) 
w = 2*pi*p(:,1); % Converts frequencies to 

"omegas" 
bl = 0.0144018; % Position of 1st microphone 

from tube wall (m) 
b2 = 0.0254508; % Position of 2nd microphone 

from tube wall (m) 
zl . = -j*(w/c) .*(b2-((fr2./frl)*bl)) ./ (1-(fr2./frl)); % 

Complex acoustic impedance 

figure (5) 
plot(p(: ,1) ,real (zl) ) 
axis([0,3500,-12,14] ) 
xlabel('Frequency (Hz) ' ) 
ylabel('Real Part of Acoustic Impedance') 
title(['Real Part of Acoustic Impedance vs.  Frequency For 

',q]) 

figure (6) 
plot(p(:,1),imag(zl)) 
axis([0,3500,-12,14]) 
xlabel('Frequency (Hz)') 
ylabel('Imaginary Part of Acoustic Impedance') 
title(['Imaginary Part of Acoustic Impedance vs.  Frequency 

For \q]) 

figure (7) 
plot (p( : , 1) ,real (zl) ,p(: ,1) ,imag(zl) ) 
axis( [0,3500,-12,14]) 
xlabel('Frequency (Hz)') 
ylabel('Acoustic Impedance') 
title(['Real and Imaginary Parts of Acoustic Impedance vs. 

Freq. For ',q]) 

figure (8) 
plot(real(zl),imag(zl)) 
axis([-12,14,-12,14]) 
xlabel('Real Part of Acoustic Impedance') 
ylabel('Imaginary Part of Acoustic Impedance') 
title(['Real vs. Imaginary Parts of Acoustic Impedance For 

■,q]) 

end 

2. The next program is called "Impedance.6", run on the MATLAB R12 version. 

It uses the exact impedance formula derived from Equation 30: 
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%This program is designed to compute acoustic impedance given 4 
data files obtained 

%from the microphone calibration and a measurement using a sample 
installed 

%at the end of the tube.  The exact formula is used. 

clear 
n=l; 
while n==l 

dispC     ') 
disp('The first graph will display the real part of the ratio 

of) 
disp('Microphone #2 output voltage over Microphone #1 output 

voltage') 
disp('with the Microphones in the calibration position.') 
dispC     ') 
disp ('Please type in name of your file in which this data is 

saved.') 
y = input('Ensure you type file exactly as it was saved. ','s'); 
p=eval( ['load(' ' ' y ''')']); 

figure (1) 
plot (p(:,l) ,p(:,2) ) 
xlabel('Frequency (Hz)') 
ylabelCReal Part of Mic. #2 0/P Volt./Mic. #1 0/P Volt.') 
title('Real Part of Microphone #2 0/P Volt./Microphone #1 0/P 

Volt. vs. Freq. (Cal Position)') 

dispC     ') 
disp('Does this graph accurately reflect your trace saved from 

the SRS-785? ' ) 
x=input ('Enter 1 to mean YES, 0 to mean NO ') ,-  %User verifies 

graph is correct 
if x == 0 

disp('     ') %Erroneous graph 
aborts program 

disp('There is an error.') 
disp('Please verify file name t;T>ed in correctly') 
disp('and that trace was saved properly on the SRS-785.') 
break 

end 

dispC     ') 
disp('The second graph will display the imaginary part of the 

ratio of') 
disp('Microphone #2 output voltage over Microphone #1 output 

voltage') 
disp('with the Microphones in the calibration position.') 
disp ('     ') 
disp ('Please type in name of your file name in which this data is 

saved') 
yl = input('Again ensure file name is typed exactly. ','s'); 
pl=eval( ['load(' ' ' yl ''')']); 

figure (2) 
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plot(pl(:,l) ,pl(:/2) ) 
xlabel('Frequency (Hz)') 
ylabel('Imag. Part of Mic. #2 0/P Volt./Mic. #1 0/P Volt.') 
title ('Imag. Part of Microphone #2 0/P Volt./Microphone #1 0/P 

Volt. vs. Freq. (Cal Position)') 

dispC     ') 
disp('Does this graph accurately reflect your trace saved from 

the SRS-785? ') 
xl = input ('Enter 1 to mean YES, 0 to mean NO ') ; %User verifies 

graph is correct 
if xl == 0 

disp('     ') %Erroneous graph 
aborts program 

disp('There is an error.') 
disp('Please verify file name was typed in correctly') 
disp('and that trace was saved properly on the SRS-785.') 
break 

end 

dispC     ') 
disp('The third graph will display the real part of the ratio 

of) 
disp('Microphone #2 output voltage over Microphone #1 output 

voltage') 
disp('with the Microphones in the sample measurement position.') 
dispC     ') 
disp('Please type in next file name in which your data is saved') 
y2 = input('Again ensure file name is typed exactly. ' , ' s ') ; 
p2=eval(['load(''' y2 ''')']); 

figure (3) 
plot(p2 (:,1) ,p2 (:,2) ) 
xlabel('Frequency (Hz)') 
ylabel('Real Part of Mic. #2 0/P Volt./Mic. #1 0/P Volt.') 
title('Real Part of Microphone #2 0/P Volt./Microphone #1 0/P 

Volt. vs. Freq. (Sample Position)') 

disp('     ') 
disp('Does this graph accurately reflect your trace saved from 

the SRS-785?') 
x2 = input ('Enter 1 to mean YES, 0 to mean NO ') ; %User verifies 

graph is correct 
if x2 == 0 

disp('     ') %Erroneous graph 
aborts program 

disp('There is an error.') 
disp('Please verify file name was typed in correctly') 
disp('and that trace was saved properly on the SRS-785.') 
break 

end 

dispC     ') 
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disp('The fourth graph will display the imaginary part of the 
ratio of') 

disp('Microphone #2 output voltage over Microphone #1 output 
voltage') 

disp('with the Microphones in the sample measurement position.') 
dispC     ') 
disp ('Please type in next file name in which your data is saved') 
y3 = input('Again ensure file name is typed exactly, ','s'); 
p3=eval(['load(''' y3 ''')']); 

figure (4) 
plot(p3(:,l),p3(:,2)) 
xlabel('Frequency (Hz)') 
ylabeK'Imag. Part of Mic. #2 0/P Volt./Mic. #1 0/P Volt.') 
title ('Imag. Part of Microphone #2 0/P Volt./Microphone #1 0/P 

Volt. vs. Freq. (Sample Position)') 

dispC     ') 
disp('Does this graph accurately reflect your trace saved from 

the SRS-785?') 
x3 = input ('Enter 1 to mean YES, 0 to mean NO ') ; %User verifies 

graph is correct 
if x3 == 0 

disp('     ') ^Erroneous graph 
aborts program 

disp('There is an error.') 
disp('Please verify file name was typed in correctly') 
disp('and that trace was saved properly on the SRS-785.') 
break 

end 

n=0; % Change n value to exit the 
while loop 

end 

if n == 1 % If above loop aborted n is 
still 1 

disp ('Program cannot be completed.  Please try again.') 
else 

dispC     ') 
q = input('Please enter name of sample used: ','s'); 

frl = p (:,2)+j*pl(:,2); % Loads in complex ratio from 
calibration 

fr2 = p2 (:, 2)+j *p3 (:, 2) ; % Load in complex ratio from 
measurement 

c = 343.0; % Speed of Sound in air (m/s) 
w = 2*pi*p(:,1); % Converts frequencies to 

"omegas" 
bl = 0.0144018; % Position of 1st microphone 

from tube wall (m) 
b2 = 0.0254508; % Position of 2nd microphone 

from tube wall (m) 
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A = sin((w/c)*b2) 
B = sin((w/c)*bl) 
C = cos((w/c)*b2) 
D = cos((w/c)*bl) 

zl =  -j*(A -  ((fr2./frl).*B))./(C -  ((fr2./frl)-*D));   % 
Complex acoustic impedance 

figure (5) 
plot(p(:,1),real(zl)) 
axis([0,35 00,-12,14]) 
xlabel('Frequency (Hz)') 
ylabel('Real Part of Acoustic Impedance') 
title(['Real Part of Acoustic Impedance vs.  Frequency For 

•,q] 

figure (6) 
plot(p(:,1),imag(zl)) 
axis([0,3500,-12,14]) 
xlabel('Frequency (Hz)') 
ylabel('Imaginary Part of Acoustic Impedance') 
title(['Imaginary Part of Acoustic Impedance vs. Frequency 

For \q]) 

figure (7) 
plot(p(:,1),real (zl) ,p(:,l) ,imag(zl)) 
axis([0,3500,-12,14]) 
xlabel('Frequency (Hz)') 
ylabel('Acoustic Impedance') 
title(['Real and Imaginary Parts of Acoustic Impedance vs. 

Freq. For ',q]) 

figure (8) 
plot(real(zl),imag(zl)) 
axis( [-12,14,-12,14]) 
xlabel('Real Part of Acoustic Impedance') 
ylabel('Imaginary Part of Acoustic Impedance') 
title(['Real vs. Imaginary Parts of Acoustic Impedance For 

',q]) 

end 

3. The last program is called "Reflectivity", also run on the MATLAB R12 

version. It uses the reflectivity formula derived from Equation 45 and the simple 

relationship between reflectivity and impedance defined in Equation 22: 

%This program is designed to compute acoustic impedance given 4 
data files obtained 

%from the microphone calibration and a measurement using a sample 
installed 

%at the end of the tube. 
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clear 
n=l; 
while n==l 

dispC     ') 
disp('The first graph will display the real part of the ratio 

of) 
disp('the microphone reflected pulse voltage over the microphone 

incident') 
disp('pulse voltage for a rigid wall at the end of the tube.') 
dispC     ') 
dispC Please type in name of your file in which this data is 

saved.') 
y = input('Ensure you type file exactly as it was saved. ','s'); 
p=eval(['load(''' y ''')']); 

figure (1) 
plot(p(:,l) ,p(:,2) ) 
xlabel('Frequency (Hz)') 
ylabeK'Real Part of Mic. Reflected Volt./Mic. Incident Volt.') 
title('Real Part of Microphone Refl. Volt./Microphone Inc. Volt, 

vs. Freq. (Rigid Wall)') 

dispC     ') 
disp('Does this graph accurately reflect your trace saved from 

the SRS-785?') 
x=input ( 'Enter 1 to mean YES, 0 to mean NO ') ;  %User verifies 

graph is correct 
if x == 0 

disp('     ') %Erroneous graph 
aborts program 

disp('There is an error.') 
disp('Please verify file name typed in correctly') 
disp('and that trace was saved properly on the SRS-785.') 
break 

end 

dispC     ') 
disp('The second graph will display the imaginary part of the 

ratio of') 
disp('the microphone reflected pulse voltage over the microphone 

incident') 
disp('pulse voltage for a rigid wall at the end of the tube.') 
dispC     ') 
disp('Please type in name of your file name in which this data is 

saved') 
yl = input ('Again ensure file name is typed exactly. ' , ' s' ) ,- 
pl=eval(['load(''' yl ''■)']); 

figure (2) 
plot(pl(:,l),pl(:,2)) 
xlabel('Frequency (Hz)') 
ylabel('Imag. Part of Mic. Reflected Volt./Mic. Incident Volt.') 
title('Imag. Part of Microphone Refl. Volt./Microphone Inc. Volt, 

vs. Freq. (Rigid Wall)') 
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dispC     ') 
disp('Does this graph accurately reflect your trace saved from 

the SRS-785?') 
xl=input ('Enter 1 to mean YES, 0 to mean NO '); %User verifies 

graph is correct 
if xl == 0 

disp('     ' ) ^Erroneous graph 
aborts program 

disp('There is an error.') 
disp('Please verify file name was typed in correctly') 
disp('and that trace was saved properly on the SRS-785.') 
break 

end 

dispC     ') 
disp('The third graph will display the real part of the ratio 

of) 
disp('the microphone reflected pulse voltage over the microphone 

incident') 
disp('pulse voltage for a sample at the end of the tube.') 
disp ( '     ' ) 
disp('Please type in next file name in which your data is saved') 
y2 = input('Again ensure file name is typed exactly. ' , ' s ') ; 
p2=eval(['load(''' y2 ''')']); 

figure (3) 
plot(p2(:,1),p2(:,2)) 
xlabel('Frequency (Hz)') 
ylabel('Real Part of Mic. Reflected Volt./Mic. Incident Volt.') 
title('Real Part of Microphone Ref1. Volt./Microphone Inc. Volt, 

vs. Freq. (Sample Boundary)') 

dispC     ') 
disp('Does this graph accurately reflect your trace saved from 

the SRS-785?') 
x2 = input ('Enter 1 to mean YES, 0 to mes-> NO ') ; %User verifies 

graph is correct 
if x2 == 0 

disp ('     ') %Erroneous graph 
aborts program 

disp('There is an error.') 
disp('Please verify file name was typed in correctly') 
disp('and that trace was saved properly on the SRS-785.') 
break 

end 

dispC ') 
disp('The fourth graph will display the imaginary part of the 

ratio of') 
disp('the microphone reflected pulse voltage over the microphone 

incident') 
disp('pulse voltage for a sample at the end of the tube.') 
disp(' ') 
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disp('Please type in next file name in which your data is saved') 
y3 = input('Again ensure file name is typed exactly, ','s'); 
p3=eval( ['loadC ' ' y3 "')']); 

figure (4) 
plot(p3(:,1) ,p3 (:,2) ) 
xlabel('Frequency (Hz)') 
ylabel('Imag. Part of Mic. Reflected Volt./Mic. Incident Volt.') 
title('Imag. Part of Microphone Refl. Volt./Microphone Inc. Volt, 

vs. Freq. (Sample Boundary)') 

dispC     ') 
disp('Does this graph accurately reflect your trace saved from 

the SRS-785?' ) 
x3 = input ('Enter 1 to mean YES, 0 to mean NO ') ; %User verifies 

graph is correct 
if x3 == 0 

disp (t i) %Erroneous  graph 
aborts program 

disp('There   is   an  error.') 
disp('Please verify file name was typed in correctly') 
disp('and that trace was saved properly on the SRS-785.') 
break 

end 

n=0; % Change n value to exit the 
while loop 

end 

if n == 1 % If above loop aborted n is 

still 1 
disp('Program cannot be completed.  Please try again.') 

else 

dispC     ') 
q = input('Please enter name of sample used: '. 's') ; 

frl = p (: ,2)+j*pl (: ,2) ,- % Loads in complex ratio from 
rigid bdy 

fr2 = p2 (:,2) +j*p3(:,2);        % Load in complex ratio from 
sample bdy 

r = fr2./frl; % Complex reflectivity 

z = (1+r)./(1-r); % Compute impedance from 
reflectivity 

figure (5) 
plot(p(:,1),real(r)) 
xlabel('Frequency (Hz)') 
ylabel('Real Part of Reflectivity') 
title(['Real Part of Reflectivity vs. Frequency For ',q]) 

figure (6) 
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,q]) 

For \ q]) 

,q]) 

For ',q]) 

plot(p(:,1),imag(r)) 
xlabel('Frequency (Hz)') 
ylabel('Imaginary Part of Reflectivity') 
title(['Imaginary Part  of  Reflectivity vs.  Frequency For 

figure (7) 
plot(p(:,1),real(r),p(:,1) , imag(r)) 
xlabel('Frequency (Hz)') 
ylabel('Reflectivity') 
title(['Real and Imaginary Parts of Reflectivity vs. Freq. 

figure (8) 
plot(real(r),imag(r)) 
xlabel('Real Part of Reflectivity') 
ylabel('Imaginary Part of Reflectivity') 
title(['Real vs. Imaginary Parts of Reflectivity For ',q]) 

figure (9) 
plot(p(:,l) ,real(z) ) 
axis([0,3500,-12,14]) 
xlabel('Frequency (Hz)') 
ylabel('Real Part of Acoustic Impedance') 
title(['Real Part of Acoustic Impedance vs.  Frequency For 

figure (10) 
plot(p(:,1),imag(z)) 
axis([0,3500,-12,14]) 
xlabel('Frequency (Hz)') 
ylabel('Imaginary Part of Acoustic Impedance') 
title(['Imaginary Part of Acoustic Impedance vs.  Frequency 

figure (11) 
plot(p(:,1),real(z),p(:,1),imag(z)) 
axis([0,3500,-12,14]) 
xlabel('Frecmency (Hz)') 
ylabel('Acoustic Impedance') 
title(['Real and Imaginary Parts • of Acoustic Impedance vs. 

Freq. For ',q]) 

figure (12) 
plot(real(z),imag(z)) 
axis([-12,14,-12,14]) 
xlabel('Real Part of Acoustic Impedance') 
ylabel('Imaginary Part of Acoustic Impedance') 
title(['Real vs. Imaginary Parts of Acoustic Impedance For 

',q]) 

end 
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APPENDIX J:     LABORATORY TEST PROCEDURE 

ACOUSTIC LABORATORY 

IMPEDANCE TUBE 

OBJECTIVE: To measure the complex specific acoustic impedance of 
different materials in an impedance tube using two different techniques. 

EQUIPMENT: Impedance tube with sample holders, rigid termination, 
microphone calibration fixture, HP 3314A function generator, HP 467A amplifier, 
voltmeter, Stanford Research Systems Model SR785 2 channel dynamic signal analyzer, 
Phillips PM3384 Oscilloscope. 

THEORY:     Acoustic impedance may be calculated by two methods using this 
apparatus. 

One method uses two microphones located at positions xi and x2 in the figure 
above with a band-limited, continuous white noise signal. By measuring the pressure 
wave with two microphones at positions xi and x2, the following equation may be used to 
determine relative acoustic impedance: 

■ j[sinkx2 - 
f sr \ 

sin kxx ] 

[cos£x. 
op2 

(Exact Equation) 

cos&xj 

Another method uses one microphone, located at position X3 in the figure 
above, with a transient, pulsed signal.   By measuring the incident and reflected pulse 
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signals with a rigid reflection termination and then with a sample in place, reflectivity 
may be determined by the following equation: 

r  / ■ ) ~ V //5v"""    ■'samP,e 

R        =  (Reflectivity Equation) 
sample 

<5frefl 
(ov   /   ■ ) \ / err me / <r~ inc ) rigidwall 

From the computed value of reflectivity, one can determine the relative 
acoustic impedance from the following relationship: 

Zbdy * + ^-sample 

p0c     l-R sample 

PROCEDURES: 

1. a)        The lower frequency limit of the impedance tube is determined by 
the output of the source which rolls off with decreasing frequency. The upper limit is set 
by the cut-off frequency of the first non-planar standing wave. Show that this is found 
from the formula: ka = 1.84 (where a is the tube radius). 

TWO-MICROPHONE, CONTINUOUS EXCITATIONMETHOD 

SET UP: 

1. a)        Set up the apparatus according to the block diagram: 
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Voltmeter 

Amplifier 

Junction Box 

t SampleCup ►L 
r^n^ 

Driver 

H 
Channel 2 BNC 

Connector Marked with 
Orange Dot 

(Oscilloscope 

Chi     Ch2    Ch3    Ch4 

SR-785    Dynamic    Signal 
Analyzer 

Signal O/P   Chi       Ch2 

I 

t 

MICROPHONE CALIBRATION 

1. a) Ensure the microphones at the sample end of the impedance tube 
are removed from their normal position at the top of the tube and screwed into the 
specially designed calibration cup holder similar to the picture sh->wn below. Install the 
blank cover in the normal microphone position location: 
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(Note that the calibration microphone above with the white flange will not be 
used. A blank will be installed in its place) 

b) When the microphones have been installed in the calibration cup 
holder, fasten the cup holder to the end of the tube. Ensure the microphone cord with the 
orange paint is plugged into the junction box holder marked with orange paint below the 
hole. The end of the assembly should look similar to the picture shown below: 

F" •—"•-   ■—■■ -.. ** ^*i"'-.,.. 

c) The microphones are now in their calibration position. Ensure all 
equipment is installed per step 2a. The BNC connector on the junction box that must be 
attached to the SR-785 dynamic signal analyzer channel 2 is designated with an orange 
dot marked below. The other BNC connector (opposite side of the junction box) should 
go to channel 1. 

d) Check to be sure that all joints are snugly sealed since air leaks can 
affect results significantly. Record the room temperature periodically during the 
experiment. 

2. a) You are now ready to perform the two-microphone calibration. 
Using the SR-785 dynamic signal analyzer, depress the "disk" key on the panel. When 
the menu appears on the right side of the screen, depress the key next to the "file name" 
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Option on the right hand side of the screen. Moving the large circular knob slightly will 
cause a menu file to appear. Position the cursor on the file labeled "REM.78S". Hit the 
enter key. Next hit the key next to the "recall settings" option on the screen menu. A 
new menu will appear. On the new menu, press the key next to the "recall from disk" 
option. A white noise signal will be applied. Carefully monitor your signal with the 
voltmeter to ensure you are not overdriving the speaker! Signals in excess of 50mV may 
result in distorted measurements! 

b) Ensure the toggle switch on the junction box is in the "on" position 
marked with orange paint. For best results, ensure microphone has been on for at 
least 15 minutes prior to measurements. 

c) Record the calibration data by depressing the "output" key on the 
SR-785 and noting the file start number indicated ie. 6. Ensure the active screen is 
channel A, the real part of the voltage ratio of the two microphones. Depress the "print 
screen" key and the data will be saved to the floppy disk. Next depress the "active 
display" toggle key. The active screen is now channel B, the imaginary part of the 
voltage ratio of the two microphones. Depress the "print screen" key and the data will be 
saved to the floppy disk under the next sequential file number. Keep careful track of 
which data is saved under each file on your floppy disk. If you don't you will be 
unable to obtain acoustic impedance measurements from the MATLAB program. 

SAMPLE MEASUREMENT 

1. a)        After the calibration data are saved, remove the calibration cup from the 
end of the tube and unscrew the microphones from the holder. Reposition the 
microphones (and junction box) to their normal measurement position. Again, ensure 
the BNC connector on the junction box that is attached to the dynamic signal 
analyzer on channel 2 is marked with an orange dot! Ensure the microphone plate is 
bolted into the opening where the blank had been installed. The end of the assembly 
should now look like the figure shown below: 

b) Install a cup containing a sample at the end of the tube. 
c) You   are   now   ready   to   perform   an   acoustic   impedance 

measurement. Repeat steps 3a through 3c as described above. 
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d) Repeat steps 3a through 3f for each sample provided and obtain a 
measurement with the end cup removed (ie. Open Tube). The sound radiated from the 
open end should not be dangerously loud, but ear- plugs are recommended. 

ONE-MICROPHONE. TRANSIENT EXCITATION METHOD 

SET UP: 

1. a)        Set up the apparatus according to the block diagram: 

Voltmeter -- 

Function Generator 

Synch        Output i— 

Amplifier -- 

i 
i 

—i 
i 
i Junction Box t 

^ 
^A 1 / X 

1 ! T 
SampleCup W- <- Driver 

t N 

t Ensure BNC connec 
side          where 
microphone    close 
driver is plugged. 

ted to 
the 

it    to 
-►i 

i— 

Chi 
i 

Oscilloscope 

i j 

i 

Ch2    Ch3     Ch4 

► i > 
r—' 

1  

SR-785    Dynamic    Signal 
Analyzer 

Trigger In   Chi       Ch2 

—->  .... !     L ! 
i                 i 

ABSORPTION COMPENSATION 

1. a) 
sample holder). 

Install a rigid boundary at the end of the tube.   (Use a blanked 

2. a)        You are now ready to perform the tube absorption compensation 
and a series of reflectivity measurements. Acoustic impedance may be derived from the 
complex  reflectivity measurement  (see KFCS  eq.  6.3.18).     Ensure the  following 
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parameters are coming from the function generator to produce a half cycle burst mode 
pulse N=l cycle: 1 volt amplitude; 4000Hz carrier frequency; 0 volt offset; 50% 
symmetry; negative 90 degrees phase; and N=l cycle. You are now sending a pulsed 
signal into the impedance tube. Ensure the toggle switch on the junction box is in the 
"on" position marked with orange paint. For best results, ensure microphone has been 
on for at least 15 minutes prior to measurements. 

b) Using the SR-785 dynamic signal analyzer, depress the "disk" key 
on the panel. When the menu appears on the right side of the screen, depress the key next 
to the "file name" option on the right hand side of the screen. Moving the large circular 
knob slightly will cause a menu file to appear. Position the cursor on the file labeled 
"REFLWTIM.78S". Hit the enter key. Next hit the key next to the "recall settings" 
option on the screen menu. A new menu will appear. On the new menu, press the key 
next to the "recall from disk" option. You will have two time delay windows where the 
signal will appear. The incident pulse will be set in the top window (channel A) and the 
reflected pulse will appear in the bottom window (channel B). 

c) Depress the "trigger" key on the SR-785 and reset the time delays 
1 and 2 to zero using the keys to the right of the screen and the dial. Next, depress the 
"window" key and reset the force length to zero as previously described. 

d) Using the cursor, find the time where the pulse is zero (or very 
close) just prior to the rise of the peak of the first (incident) pulse. Note this time - it will 
be the value you will set for time delay 1. Using the cursor, find the time where the 
voltage is zero (or very close) just prior to the rise of the peak of the second (reflected) 
pulse. This time will be the value you will set for time delay 2. Subtract the second time 
from the first time and you will have the value for the force length. Using the "trigger" 
and "window" keys set these measured and calculated values. 

e) Depress the "display setup" key. From the menu that appears to 
the right of the screen, select the "measurement option" and set it to "Freq. Resp." Do 
this for the other channel using the "active screen" toggle button. 

f) Hit the "start/reset" key to initiate reflectivity calibration measurement. 

g) Record the calibration data by depressing the "output" key on the 
SR-785 and noting the file start number indicated ie. 6. Ensure the active screen is 
channel A, the real part of the voltage ratio of the two microphones. Depress the "print 
screen" key and the data will be saved to the floppy disk. Next depress the "active 
display" toggle key. The active screen is now channel B, the imaginary part of the 
voltage ratio of the two microphones. Depress the "print screen" key and the data will be 
saved to the floppy disk under the next sequential file number. Keep careful track of 
which data are saved under each file on your floppy disk. 
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SAMPLE MEASUREMENT 

1. a) After the compensation data are saved, remove the blank cup from 
the end of the tube and install a cup containing a sample material. Repeat step g above 
for each sample provided and obtain a measurement with the end cup removed (ie. Open 
Tube). The sound radiated from the open end should not be dangerously loud, but 
earplugs are recommended. 

DATA ANALYSIS WITHMATLAB 

1. a) Using the floppy disk you have saved all files on, run the 
MATLAB programs "Impedance" and "Reflectivity". Ensure you follow all instructions 
very carefully. When it asks you to type in the file name under which a particular 
measurement is stored, be very careful to type it in exactly. Typically the SR-785 will 
save data under files beginning with the letters "Scrn" followed by four digits. Since the 
floppy disk will be installed in the MATLAB computer's "a" drive, you might type in the 
file as "a:Scrn0006". The computer will reproduce your SR-785 trace and ask you to 
confirm that it is your correct signal. 

b) By following the instructions correctly, the programs will provide 
graphs of the acoustic impedance over the frequency range (the "Reflectivity" program 
will additionally provide the acoustic reflectivity for each material). 

c) Print out each graph (real part, imaginary part, and both versus 
frequency as well as real versus imaginary) from both programs for each material and the 
open tube. Compare the acoustic impedance results obtained by the one and two 
microphone methods. 
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